
Team WilBauer:

Dijkstra’s Algorithm in Parallel

Tom Wilson

Nicholas Hofbauer

Overview

The problem which we decide to parallelize was Dijkstra’s Algorithm. It is a graph search
algorithm that solves the single source shortest path problem for a graph with non-negative edge
costs producing a shortest path tree. In short, it finds the shortest distance from point A to point
B on a graph and the shows the route.

The pseudo-code for the algorithm is as follows:

for each vertex v in Graph:

dist[v] := infinity
 previous[v] := undefined
dist[source] := 0
Q := the set of all nodes in Graph
while Q is not empty:
 u := node in Q with smallest dist[]
 remove u from Q
 for each neighbor v of u:
 alt := dist[u] + dist_between(u, v)
 if alt < dist[v]
 dist[v] := alt
 previous[v] := u
return previous[]
--

With the print out of the answer simply being:

--

S := empty sequence
u := target
while defined previous[u]

insert u at the beginning of S
u := previous[u]

This leads us to need the following data in each version of the software we create:

1. Distance from source - mapping a vertex to a distance

2. Unvisited Nodes

3. Previous node - mapping a vertex to the previous node
This allows us to determine the path of all vertices from the
source node to a given destination node

Software Design

The whole of this project involved 4 main classes, the two matrix based programs and the
two collection based programs. We decided to try out the performance differences between the
two, both in terms of sequential and parallel computation. Both of the collection classes are each
supported by a few other classes to give them the needed functionality. The support classes
include Edge.java, Vertex.java and Graph.java. Each of these classes were quite simply the
objects they’re named after. Their main purpose was to hold information and sort it.

The sequential matrix program was a simple graph searching program that used
Dijkstra’s Algorithm. The graph itself was an adjacency matrix of integer primitives, and the lists
of unvisited nodes, previous nodes and the distances from the source were kept in arrays of
integer primitives. Most of the loops involved are numerically iterating over one of these
structures. The primary loop is the one which goes over the array of unvisited nodes.

The sequential collections program is a slightly less simple graph searching program that
used Dijkstra’s Algorithm. Instead of using a matrix, it uses a graph object that is made up of
Vertex and Edge objects. The previously mentioned arrays are replaced with tree maps to
provide quick searching for the correct element. The loops in this program are all archived
through standard iteration under the hood.

The parallel Matrix program is structured almost identically to the sequential version.
However, by using Parallel Java, the unvisited nodes array is broken up and computed by each of
the available processors. This allows each processor to compute part of the distance to the
destination node and then combine it to get the total answer at the end.

In a likewise fashion, the parallel collections version is also very similar to its sequential
counterpart. However, not only is it different from the sequential version in that it runs in
parallel, it’s also different in function for the other parallel program in that it does it in a different
way. Rather than spiting up the number of unvisited nodes, the parallel collections program split
up the part out the algorithm where the distance to each neighbor is computed. The number of
neighbors is for each node is split up amongst the processors when the distance calculation takes
place.

Developer’s Manual

First, it is important to note that all of the programs must have access to the Parallel Java
library, including the sequential versions. This is needed to properly run on multiple processor
machines. Secondly, all off the programs must be compiled using JDK v5. It is unknown why,
but versions about 5v cause problems with running times involving the Parallel Java library.

Both the sequential and parallel matrix programs can be complied alone, but the
sequential and parallel collections programs need to be compiled along with Graph.java,
Vertex.java, an Edge.java. Those class are required if the collections programs are to function.

If it is sure that you have the PJ library and are compiling with JDK v5, then you may use the
following commands to compile each of program’s code:

javac DijkstraMatSeq.java

javac DijkstraMatSmp.java

javac DijkstraColSeq.java Graph.java Edge.java Vertex.java

javac DijkstraColSmp.java Graph.java Edge.java Vertex.java

User’s Manual

To run any of the programs, you must be using JDK v5. This is because the code was
complied using JDK v5, and will not work otherwise. The rest that follows is assuming that the
user has the for compiled class files of the four main programs, DijkstraMatSeq.java,
DijkstraMatSmp.java, DijkstraColSeq.java, and DijkstraColSmp.java.

To run any of the 4 main programs you will need to have a text file that contains data
representing a digraph with no negative edge values and build such that you can reach any node
from any other node. The first line of the text file must be the integer number of nodes contained
in the digraph represented by the text file. Every line thereafter will represent an edge of the
digraph, in the format of:

Node1 Node2 EdgeDistance

 The nodes must be integers from 0 to N-1, where N is the number of nodes in the graph.
EdgeDistance may be any positive integer. There is a single tab character separating each
integer. An example edge:

12 5 62

Upon the start of any of the programs, the command line arguments must contain the digraph
text file, the node which the program is to start from, and the node which the program is trying to
get to, in that order. The commands for running the sequential programs are as follows:

java DijkstraMatSeq <filename>.txt <sourceNode> <destinationNode>

java DijkstraColSeq <filename>.txt <sourceNode> <destinationNode>

To run the parallel programs, you must designate the number of threads (and therefore
proccessors) to use at the start of the program. This is done using java -Dpj.nt=<K>, where K is
the number of threads to be used. The full commands to use the parallel program are as follows:

java -Dpj.nt=<K> DijkstraMatSmp <filename>.txt <sourceNode> <destinationNode>

java -Dpj.nt=<K> DijkstraColSmp <filename>.txt <sourceNode> <destinationNode>

Performance Metrics

All times are recorded in milliseconds.

Sequential Matrix

T1 T2 T3 Ts

22413 19463 20913 19463

Parallel Matrix

K T1 T2 T3 Ts Speedup Eff. EDSF

1 17463 17268 17904 17268 1.127 1.127 ----

2 11007 11253 10670 10670 1.824 0.912 0.096

3 7581 7579 80231 7579 2.568 0.856 0.084

4 6042 5912 6210 5912 3.292 0.823 0.072

8 3476 3613 3314 3314 5.872 0.734 0.052

Sequential Collections

T1 T2 T3 Ts

81241 81346 79951 79951

Parallel Collections

K T1 T2 T3 Ts Speedup Eff. EDSF

1 76245 76103 77012 76103 1.051 1.051 ----

2 44926 45194 44368 44368 1.802 0.901 0.110

3 31464 31492 32423 31464 2.541 0.847 0.090

4 25268 25752 26319 25268 3.164 0.791 0.088

8 13634 13560 14218 13560 5.896 0.737 0.051

What Was Learned

All explanations and pseudo code that we found on Dijkstra’s algorithm uses a Queue to
store all the unvisited nodes. We then would iterate over the unvisited nodes until the queue is
empty, removing the current node and performing the necessary computation. This worked fine
in both our sequential program but when we performed this in our parallel version we ran into
problems. Java would throw a ConcurrentModificationException since we are iterating over the
Queue and remove from it simultaneously. We fixed this in the collections version by using a
Map, mapping each Vertex to an Integer representation if the Vertex was visited. As for the
matrix and array version we simply used an array that held integers that represented if a node
was visited or not.

Future Work

As far as the future is concerned, our first priority is to fix the parallel matrix program.
There is no reason that it should be getting such low efficiencies and speedups, so it must be a
coding problem. We think that this is most likely due to how the unvisited nodes are distributed
across the processors for computation. Another fix to make would be to the parallel collections
program. While it might be less obvious, there should be a way to spit up the branching
neighbors between the processors even for very low numbers of neighbors. As it stands, the
program can only efficiently work for graphs where each node has a number of neighbors that is
equal to or higher than the number of processors.

As for new projects, we would create a cluster version of both the matrix and collection
versions of the program. We would need to make several modifications to the data structures
because as it stands, neither version is capable of sizing up with the number of available
machines. If we were successful with that, we would then proceed to make a hybrid SMP-Cluster
program for each version. Hopefully we could optimize on both traits and make superior
performance.

References

F. Benjamin Zhan, and Charle E. Noon. 1998. Shortest Path Algorithms: An Evaluation Using

Real Road Networks. Transportation Science 32(1): 65-73.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7.
Section 24.3: Dijkstra's algorithm, pp.595–601.

Dijkstra's algorithm. (2009, February 18). In Wikipedia, The Free Encyclopedia. Retrieved

20:14, February 19, 2009, from http://en.wikipedia.org

/w/index.php?title=Dijkstra%27s_algorithm&oldid=271627779
Meijster, A. and T.M. Roderdink . Computation of Watersheds Based on Parallel Graph

Algorithms. University of Groningen, 2004.

Traff, Jesper. and Christos Zaroliagis. A Simple Parallel Algorithm for the Single-Source

Shortest Path Problem on Planar Digraphs. Journal of Parallel and Distributed
Computing, 2000.

