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1. Introduction

Advances in mobile computing and wireless communication have offered new
possibilities for Intelligent Transportation Systems (ITS). Increasing interest has been
focused in the last years to deploy these technologies on vehicles and use them as a

means of improving driving safety and traffic efficiency.

By adding short-range communication capabilities to vehicles, the devices
form a mobile ad-hoc network, allowing cars to exchange information about road
conditions. This is often referred to in the literature as Vehicular Ad-hoc Networks

(VANETS) or Inter-Vehicular Communication (IVC) systems

The users of a VANET, drivers or passengers, can be provided with useful
information and with a wide range of interesting services. One category of such
services includes safety applications, like various types of warnings: ice on road,
intersection violation, cars in front braking, and collision avoidance and mitigation in
situations like: lane changing, lane merging and preparation for imminent collision.
Another important class of applications that can be deployed over VANETS is
concerned with traffic operations and maintenance: dynamic route planning, weather
conditions publishing and adaptive signal control in intersections. Commercial and
entertainment applications can be implemented as well, electronic payments,

reservations, advertisements or gaming and file transfer are just a few examples.

Thesis statement

This thesis examines the possibility of deploying an adaptive signal control
system in intersections, a system that can base its control decision on information
coming from cars. Thus, each intersection with traffic lights is provided with a

wireless infrastructure node that can extract data from an existing VANET.

For over thirty years now, efforts have been made to create traffic lights
systems that can respond to the ever increasing traffic. Most of the signal control

systems in United States, for example, are part of the first or the second generation,



and rely on timing plans generated offline by traffic engineers using optimization
models. These systems are hard to maintain and do not respond well to traffic events,
like a football game or road construction. More sophisticated adaptive traffic lights
use data coming from sensors, cameras and loop detectors to generate online timing

plans.

An architecture based on wireless communications can employ greater
flexibility than the ones mentioned before, providing more information for the signal
decision process. The cost is also significantly lower, considering loop detectors are
usually installed in the asphalt, under each lane approaching the intersections and

cameras require high processing power and good orientation.

Project Objectives

TrafficView is a data dissemination system we have implemented. It is an
application that runs on vehicles to collect and disseminate traffic information and
finally, to provide meaningful data to the driver. It is an example of a VANET
platform.

The adaptive signal control application presented here was developed to
communicate with TrafficView, a platform for inter-vehicle communication. The
main objectives are:

= to increase the throughput and to decrease the average delay, considering
either one intersection or multiple coordinated intersections;
= to reduce overall fuel consumption and emissions;

" to increase safety in intersections.

Testing a VANET application is a real challenge because of the number of
nodes needed for a typical scenario and also because of the specific vehicle mobility
model. We have developed our own custom microscopic simulator that takes into
account this mobility model and simulates communication between nodes. With this
tool we have emulated the TrafficView application on hundreds and even thousands
of vehicles. We have also used the simulator to evaluate the adaptive traffic lights

system in various conditions and measure performance parameters.



The rest of this document is organized as follows. Section 2 provides a
description of the TrafficView, in the context of vehicular networks applications. A
general background and related research is discussed first, and then we present the
navigation system and data dissemination module in TrafficView. In Section 3 we
introduce an integrated VANET simulator with support for mobility, communication
between nodes and code emulation. Our adaptive traffic signal control mechanism,
based on communication with vehicles is presented in Section 4 and, finally, we draw

some conclusions in the final section.



2. TrafficView Driver Assistant

TrafficView is a data dissemination platform for VANETs that we have
implemented. It is an application that runs on vehicles to collect and disseminate

traffic information and finally, to provide meaningful information to the driver.

2.1. Vehicular networks

VANETSs provide ITS with higher flexibility and scalability then systems that
rely on complex infrastructure deployed on the roadside. Because the devices are
installed in vehicles, some of the limitations of traditional mobile ad-hoc networks are
overcome. Thus, nodes are considered to have unlimited energy coming from the car
battery and there is enough space in a vehicle to install a computing device with good
processing power. However, the challenges a vehicular network faces are not few and
they may refer to rapid changes of the topology because of the high mobility of nodes,
to limitations of the wireless bandwidth or to frequent disconnections in the topology.
Improvements of this architecture, that could address some of these challenges, may
consider base stations or antennas being deployed in critical points along the roadside

or using occasionally WAN connectivity (like GPRS or 3G).

One important problem that deployment of car-to-car communication faces is
the fact that it is a technology with network effect: its value increases along with its
distribution. This makes it difficult to be deployed as the first users could not benefit
from car-to-car communication properly. Researchers have also been concerned with
the degrees of security such a vehicle network might need and possible ways to
achieve them. Having this in mind, electronic license plates seem like a possible node

authentication method. [4]



2.1.1. Background and Related Work

As it is an emerging technology, inter-vehicle communication is at the edge of
passing from academia and research laboratories to mass commercial production.
Although many car manufacturers have announced their intention of deploying this
feature on their future cars, relevant results may be found for now mostly in research
projects and simulations. Most of these projects try to make use of the collaborative
information exchange between vehicles in order to develop safety applications such as
emergency, traffic jam, traffic control, collision avoidance or obstacle warnings. A
routing protocol suitable for this highly mobile ad-hoc network is also needed in order

to provide multi-hop communication.

802.11 has been widely tested in inter-vehicular communication scenarios,
though it has a number of features that make it unfeasible for such an environment:
flexibility of radio resource assignment and of transmission rate control is low,
unlicensed frequency that produces interferences and a small signal range. There have
been numerous efforts to create wireless MAC protocols that are suitable for
VANETs. For example, Rao and Stoica suggest in [5] a layer on top of 8§02.11 MAC

layer that can solve asymmetric flow and hidden terminal issues.

In US, the Federal Communications Commission (FCC) has allocated 75 MHz
of spectrum at 5.9 MHz for Dedicated Short Range Communications (DSRC), a
variant of 802.11a [34]. Its goal is to support both safety applications and other
Intelligent Transportation System applications over roadside-to-vehicle and vehicle-

to-vehicle communication channels [15].

The FleetNet project, which ended in 2003, aimed to develop a
communication platform for inter-vehicle communication. The platform is suitable for
deploying three types of applications: cooperative driver assistance (emergency or
obstacle warning), decentralized floating car data (traffic jam monitor or dynamic
navigation) and user communication and user services (i.e. mobile advertising) [19].
For communication between vehicles the system uses UTRA TDD (UMTS Terrestrial
Radio Access Time Division Duplex) because of the availability of an unlicensed

frequency band at 2010-2020 MHz in Europe. As a routing protocol FleetNet chooses



a position-based protocol which is used along with a distributed location service and

relies on navigation systems.

The CarTalk 2000 project focuses its efforts on three application categories:
information and warning functions, communication-based longitudinal control
systems and co-operative assistance systems [9]. CarTALK, like FleetNet, uses the

UMTS radio access technology and also uses a position based routing protocol.

California PATH program has been engaged since 1986 in developing
solutions to transportation systems problems. Their work is focused on Policy and
Behavioral Research, Transportation Safety Research, Traffic Operations Research
and Transit Operations Research. Some of the many projects that are part of the
program envision inter-vehicle communication or vehicle-to-infrastructure
communication in systems ranging from safety messaging (using DSRC technology)

to automate driving, vehicle platoons formation and automated highways.

The fact that vehicle-to-vehicle and infrastructure-to-vehicle communication
are soon going to influence the way we drive is proved by recent news that show
important results coming from the automotive industry. DaimlerChrysler [37] have
publicly tested dynamic driving using wireless communication between cars in June
2005 using DSRC technology. Elsewhere, in Japan, Honda have announced the
completion of Honda ASV-3 Advanced Safety Vehicles equipped with cameras,
radars and communication devices providing new safety features like accidents
prevention, information about approaching obstacles and vehicles on the road or

drivers assistance in breaking and steering. [35].

For this technology to become ubiquitous there is an obvious need for
standardization in order to have compatibility between different car vendors. Efforts
are currently being made in Europe, Japan, US and other countries to accomplish this.
In Europe, the Car2Car Communication Consortium aims to promote the allocation of
a royalty free European wide exclusive frequency band for Car2Car applications and
to develop strategies and business models to speed-up the market penetration and

standardization.


http://www.path.berkeley.edu/PATH/Research/currentpolicy.html
http://www.path.berkeley.edu/PATH/Research/currentpolicy.html
http://www.path.berkeley.edu/PATH/Research/currentsafety.html
http://www.path.berkeley.edu/PATH/Research/currenttraffic.html
http://www.path.berkeley.edu/PATH/Research/currenttransit.html

2.2. TrafficView Navigation System

The TrafficView navigation module is in charge with efficient storage and
manipulation of the digital map, as well as accurate mapping of GPS readings to map
locations. As input for the maps we use the TIGER files available for free [13], in the
format of Record Type 1 (RT1) for and Record Type 2 (RT2). The two files types
permit us to construct the road graph. The RT1 files contain all the road segments for
a map region, with information like the type, name, direction, or starting and ending
points. The RT2 files contain intermediate points of the road segments for the
representation of curves. There are TIGER maps for every state in US, and for testing
we have built our own, using the same format and representing a part of our campus
Figure 1. To calculate distances between points on the map we have used conversion
tables from degrees to meters depending on the latitude and longitude. The number of

meters per degree of latitude/longitude varies with the degree [14].

Figure 1 Dynamic map of the "Politehnica" University of Bucharest.

The geographical coordinates of a vehicle, read from the GPS device, are
transformed to a point on a road of the map and displayed accordingly to the driver. In
order to do this efficiently the system relies on the PeanoKey mechanism, initially

described in [1], which is efficient in terms of both search and storage.

A PeanoKey is associated with a point in the 2D space, and it is obtained by
interleaving the digits of the two coordinates. Thus, the 2D set of points is represented

in a one dimensional set. For example the PeanoKey associated with the geographical



point at 26.047800 degrees longitude and 44.435348 degrees latitude is
4246403457384080. When the map is being built, a set of sorted PeanoKeys is also
computed, corresponding to all the points of the map. Consecutive PeanoKeys in this

set correspond to points that are relatively close on the map.

Finding the closest point on the map, given the two GPS coordinates, latitude
and longitude, reduces first to finding the PeanoKey in the set that is the closest to the
PeanoKey newly formed and then, performing a linear local search around this

element.

2.2.1. Implementation Details

The first action taken when
TrafficView is started is to load the map into Map Building Process

an appropriate structure. The steps for this

Load Road Segments

task are summarized in Figure 2. First, the
Tiger RT1 file is parsed and a set of road
segments is built. This has, of course, an O(n)
complexity where n is the number of segments
in the .RT1 file. For each record in the .RT2
file, additional points are given for a specific
segment. This implies O(n®) complexity as for
each record, the corresponding segment has to
be located in the set, in order to add the points.
Although there may be multiple RT2 records
in the file for a single segment, only a part of
the segments are given records in the .RT2

file, namely the ones that have curves.
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Sort the PeanoKeys index
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Figure 2. The sequence of actions for building

the map structure.




The TIGER files contain points only for a few locations along a road
segments, such as curves or intersections. As we need to map a vehicle to a point on a
road more accurately, new points are created through interpolation. The points are
created with a specified resolution so no two consecutive points will be farther than a
configurable distance. This increases significantly the number of points, m, and

determines the complexity of the map building process.

The next phase takes care of merging the segments. The road segments in
.RT1 file are of small sizes and for a long road there may be tens of such records. This
makes them difficult to manipulate so they have to be merged. This step normally
takes O(n”) steps, because every two segments that have the same name have to be

considered.

For each point of the map, PeanoKey value is computed as specified above
along with a distance to the previous point on the segment it is on. The PeanoKey set
of all the points will be used for quick location finding and the distance value serves

for computing road distances between points.

Next, the PeanoKey set is sorted and this represents the most time expensive
step of the process: O(m log(m)) where m is the total number of points. Finally, given
the sorted set, finding the intersections between roads resumes to finding consecutive

equal values in this set, so it is only a O(m) traversal of PeanoKeys.

During the execution of the program, it is often needed to find the closest point
on the map, given the latitude and the longitude. This is accomplished by running a
binary search on the set of PeanoKeys (O(log(m)) complexity) and then the closes
point is found after a local linear search around the index returned by the binary

search.

Figure 3 presents the UML class diagram for the classes related to the map
structure. A map object has a collection of roads. Each road (Road.java) has a name,
number of lanes, a set of points and a set of crosses and it can be a one-way or two-
way street. Each point in the set of points of a road, has a longitude, latitude, distance
to the beginning of the segment and a reference to a PeanoKey value. All the
PeanoKey values are kept in a collection in the Map class. Likewise, each PeanoKey

has an inverse reference to a point on a road.
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A road also has a set of crosses (Cross.java). Each cross object contains

references to the crossing segments and to the points of intersection.
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Figure 3. The UML class diagram of the navigation module
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2.3. TrafficView Data Dissemination Model

Most literatures suggest as a point of start to VANETs the application of
information dissemination between vehicles using periodical and regional broadcasts.
The main problem here is that broadcasts can result in flooding the network, also
known as the broadcast storm problem, so the number of messages has to be limited
in order to keep scalability. Several optimizations have been proposed, such as
decreasing the level of detail as the distance increases by using aggregation models
[1]. In [16], the authors present an adaptive way to set the broadcast period depending
on the significance of the message. In [17] several schemes (probabilistic, cluster

based and other) are proposed to reduce redundant rebroadcasts in wireless networks.

A configuration, in which information propagates through periodical
broadcasts from node to node, is said to work in the “push” mode. On the other side,
in the “pull” mode, information may be obtained on-demand, based on query-reply
communication. These two models may be put into balance when it comes to network
performance. In the “push” mode, increasing the range of the forwarding area results
in greater bandwidth requirements and more useless information. However, using
more queries even for shorter distances offers only the needed information but it is
less reliable and may increase the number of messages comparing to “push” mode as

the distances get shorter.

In TrafficView, vehicles periodically transmit information about themselves
and other cars on the road. They use one-hop broadcasts to avoid a broadcast storm
and each record consists of a position, identification number, speed, direction, state

and a timestamp of the moment when this information was created.

We have chosen to limit the size of the set of cars transmitted to fit in one
single packet. This avoids the delay caused by flow control which appears when
dealing with multiple packets. It also saves bandwidth and reduces the delay caused

by retransmissions.

Sets of car records are forwarded by each node alternatively, for cars running
on the same street and in the same direction with the forwarder, and for the opposite
direction (bi-directional model). Research shows that a propagation model that makes
use especially of the cars on the opposite direction when forwarding may have better

results in terms of distance of knowledge, error and delay of information. The bi-

13



directional model can adapt to situations when traffic on one direction is too low

switching to a single direction model.

2.3.1. Protocol description

The TrafficView packets for data dissemination in the “push” mode

(periodical regional broadcast) have the following format:

I byte | 1byte | I byte 1 byte 20 bytes | 20 bytes | 20 bytes 20 bytes

Type | Mapid | State | Carsno. | Sender Car 0 Car 1 Carn

— Type — specifies the TrafficView protocol type used. The type may be information

broadcast message, query/reply message or neighbor discovery;

— Map id — defines region of map currently selected. The position of each car will be

considered for this region;

— State — the category of cars in the set. It may be current road current direction,
current road, opposite direction or other road. The road and direction are relative

to the sender’s position;
— Cars no. — number of cars in the set;

— Sender & Car — car record:

4 bytes 8 bytes 1 byte 2 bytes 2 bytes 1 byte 1 byte 1 byte

Vehicle ID | Timestamp Speed | Roadid Point id Offset Lane Extra info

— Vehicle ID — the unique identification number of the vehicle;

— Timestamp — of the moment when this information was generated by the

specified vehicle;

14



— Speed — speed of the vehicle;

— Road & Point ids — specify the point on the map where that the car is the

closest to. We consider that vehicles have the same map format.
— Offset — distance to the map point;

— Lane — specifies the lane on which the car is running. This field is used

mostly in simulation, because current GPS systems are not that accurate.

— Extra information byte:

direction | signal state

— Direction — the side of the road on which the car is running

— Signal — this field is the equivalent of the electrical signals of the

car and specifies the intentions of turning.

— State — the state of the car may be damaged, crashed or normal. The
state also gives information on the current transmission mode of

the car, such as active mode or promiscuous mode.

2.3.2.  Probabilistic forwarding

Usually, on a highway or any other road, cars have a tendency to form
platoons. If every car uses the data dissemination model described above, redundant
information gets transmitted. This redundancy is even more obvious in a city
environment, where large groups of vehicles can be observed at intersections. For cars
that are moving along a street it is necessary that they broadcast their position, but
information about other cars may be redundant in the case of a platoon. In this case,
elimination of redundant information will not result in fewer messages (a moving ca
has to send minimum one record, itself), but it will result in smaller messages. Studies

of wireless networks [18] show the medium access and transmission delays vary
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significantly depending on the packet size: from 5 milliseconds for 64 bytes, to 60

milliseconds for 2048 for a certain network load.

In TrafficView, we impose a scheme in which a vehicle functions in two
different modes: it either transmits a “keep alive” message with only one record with
its own data or a complete message with all the car records that it currently knows
about. At each broadcast period, the application will decide which type of message to
transmit in a probabilistic manner. It will transmit the full set of cars with a
probability proportional with the size, in meters, of the platoon that it is currently in.
For example, if two cars are very close to each other, it is a great chance that only one
will transmit the complete set of cars while if they are a few tens of meters apart
probably both will transmit the complete packet. In a wider and denser platoon, it is
ensured probabilistically that information (about cars in or outside the platoon) gets

transmitted from back to front and vice-versa without great redundancy.

The complete set of cars does not include car records that are older than a

certain threshold and it is limited to fit into one single Ethernet 802.11 frame of 2300

bytes.

Figure 4 A view of the communication model used by each vehicle in a City Scenario (A) and a Highway
Scenario (B). Vehicles are either in promiscuous mode (red), “keep alive” (orange) or complete forwarding
(blue).

In a city environment further optimizations can be accomplished by setting
cars that are not moving to promiscuous mode. However, such a car will warn the
surrounding nodes just before going into this state, in order not to be deleted from
their records when the entry would normally expire. As soon as the car starts moving,

it will switch back to normal mode. However, during the period a car is in

16



promiscuous mode, it may send complete messages if the probabilistic algorithm

decide it that it should.

In this way the number of messages exchanged in intersections or in congested
areas is greatly reduced and the performances of the network increase. Figure 4A
presents the network configurations in a city environment, near an intersection and on
a highway. In both pictures, the blue cars are the nodes that transmit messages with a
complete set of cars, while the orange ones send simple messages, informing only on
their position update. Furthermore, in Figure 4A, the vehicles that are stopped at the

traffic light, shown in red, are in promiscuous mode.

Next, we studied the behavior of probabilistic forwarding presented above in
comparison with complete forwarding model in which every node sends its entire
database to the neighbors. The test scenario was a 10 km segment of New Jersey
Turnpike Figure 4B, a highway in the U.S. We ran our simulation over few hours in

which we have varied the flow from 500 to 1500 vehicles/hour/lane.

In both situations we impose a time limit for the age of the records, so that
vehicles older than this limit will not be forwarded and deleted from the database. The
communication model is a near ideal one and does not account for packet loss or

abnormal delays in the wireless protocol.

Figure 5 a) shows that when using the probabilistic forwarding there is a small
decrease in the average vehicles’ database size, as compared to the complete model.
This difference slightly grows towards the high extremity of the flow, when the
density of vehicle per km is high and the network is connected over large distances.
The reason for this is that, for probabilistic forwarding, the probability of a record to
traverse a large distance of the network decreases as the distance increases. The graph
of average knowledge range (Figure 5b) or the average distance over which a vehicle
“sees” other vehicles has great variations. This is due to the random nature of the
platoon formation. Platoons may be dense or sparse, spread over a small distance or a
very large distance. However, generally the complete forwarding model has a little

larger knowledge range.
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Figure 5. Comparison between probabilistic forwarding and complete forwarding for various densities on a
10 km highway segment.

The average error graph has almost equal values for both models because the
average speed is the same and the same aging period of the records is chosen.
Improvements of this error are attained when a vehicle hears about another one
through fewer intermediate nodes, thus decreasing the delay of arrival. This is the
reason why for higher densities, there are multiple paths for a record to be forwarded

so the record is forwarded faster and the average error decreases.

Finally, the last graph shows the great improvements of the probabilistic
forwarding over the complete forwarding, in terms of average packet size. In the
complete forwarding model the packet size increases as the network is denser,
because on average each car will see more and more cars. On the other side, for
probabilistic forwarding, the size will decrease because as the density of vehicles

increases, the probability for a vehicle to transmit the full database decreases.

Overall, in spite of the slight decrease of visibility for the ideal case, the
probabilistic forwarding model brings radical improvements in bandwidth. In practice,

however, higher bandwidth adds delays that will reduce the visibility, so the
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probabilistic forwarding model is expected to perform even better than the complete

forwarding model.

3. Simulation Environment

The evaluation of VANETS consists of real outdoor experiments, but also of
simulation and statistical analysis. The simulation process has to take into account

traffic conditions, driving characteristics and wireless communication protocols.

The VANET simulator we have developed is a discrete event simulator. The
simulation time advances with a fixed time resolution after executing the application
code for the current moment of the simulation time. More specifically, at every
moment of the simulation time, all the current events are pulled from a queue of

events, and handled in a random order.

3.1. VANET Simulation

Network simulators, like NS-2 or GloMoSim, implement the full network
protocol stack and simulate the signal propagation model and the physical
environment for wireless communications. For IVC, wireless network simulators have

to take into account the mobility of nodes that can affect signal propagation.

Traffic simulators can be microscopic or macroscopic. Microscopic simulators
model local behavior of individual vehicles by representing the velocity and position
of each vehicle at a given moment. Macroscopic simulators model traffic condition in
a global manner and may use concepts from wave theory. Usually traffic is

represented in terms of flows (vehicle/hour), density (vehicles/km) or average speed.

In relation to IVC, microscopic simulation offers a more relevant
representation. CORSIM [36] or VISSIM [38] are examples of microscopic traffic
simulators that models vehicle interactions, traffic flows, congestions or streets and

intersections geometry.
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Considering the way they are built, simulation environments can be time based
or event based. In time based models, like meteorological or traffic simulators, time
advances with a fixed quantum and the entities act accordingly. Event based
simulators (network simulators) increase time variably, based on the occurrence of

events.

3.2. Structure

The events queue can hold three types of events: send, receive or GPS. A send
event for a specified node triggers the calling of the node’s procedure responsible for
preparing a message. It also schedules the corresponding receive event(s) for the
receiver(s) the simulator decides to deliver the message to, according to the network
module. The receive event is associated either with a node, or with a group of nodes
(broadcast) and it calls the appropriate handler in each of the receiving nodes. The
GPS event is scheduled at a regular time interval for each node, in order to simulate

the way a real VANET application collects GPS data periodically.

Besides these three types of events, the mobility module updates periodically
the position of each node that is a vehicle, according to the vehicular mobility model.
This model takes into account vehicle interactions (passing by, car following patterns

etc), traffic rules and various driver behavior.

The main advantage of this architecture is that the simulator can execute (or
emulate) the real application’s code without significant changes. Practically, we have
succeeded to simulate the TrafficView application [1] on each node, by calling the
appropriate methods of the application when the corresponding events occur. Some
minor changes were in order, because the original application was multithreaded
which would be a serious limitation for the simulator. Figure 1 shows the top-down

view of this simulation environment.

20



Vehicle 1

Receive Event
Receiver [« »

Receive Handler

4 Message

Send Handler
Prepare message

K Send Event Ly
gy Sender
s F---- Message
=4

GPS data

BB UMQO

O ad
'y *{ GPSEvent é

Vehicular Mobility Model

Vehicle 2 Vehicle n

Scheduler

?

Mobility Module

New Events

Figure 6. The discrete event simulator that emulates a VANET application.

3.3. Simulation of Network Communications

The environment can simulate the wireless network along with the mobility of

nodes. The more complex this simulation is, however, less scalable the overall

simulation process becomes. The basic network model that is used takes into account

only the position and the wireless range of the nodes, medium access and the average

delays for normal radio conditions reported in detailed study of wireless

communications.

Unlike ns-2 and GloMoSim which use a O(n) search through all the nodes, our

simulator delivers a message to all the nodes in the wireless range in an optimized

way using a local search of nodes. This is possible due to efficient indexing of the

map points, using the PeanoKey mechanism described above to scan the geographical

area around a point. In this manner the wireless medium of a node is quickly
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analyzed, its wireless neighbors are discovered and a map of the radio signal is built

in order to assure medium access.

To have a more accurate network model, more factors need to be taken into
account. The node’s protocol stack is one of these factors and the simulator can have
the packet encapsulation process simulated by adding all the corresponding headers to
the messages being sent. As a transport layer, UDP is preferred, while the IP network
layer can be replaced by a geographical routing and addressing scheme. The MAC
layer is 802.11b. The signal propagation model takes into account signal fading, gain

or loss caused by collisions or interference with other radio devices.

3.4. Fuel Consumption and Pollutant Emissions
Estimation

Estimating fuel consumption and pollutant emissions is an increasingly
important matter when designing intersection control systems in urban areas. The
model we have implemented is influenced by the work of Akcelik and Besley,
presented in [11]. Of special relevance to our work, we consider the estimation of the
relation between fuel consumption and emissions and the speed and acceleration of

the vehicle. The model is simplified to take into account only light vehicles.

The formula we use for the estimation of these parameters, considering light
passenger cars is:

AF =(f, + BR,v+[B,M ,a’v/1000] _,)At, when Ry > 0 or
AF = f.At, whenR;r<0,

where

AF [mL or g] — the quantity of fuel consumed or gas emitted (HC, CO, NOx) during
the Atr time interval;

v [m/s] — vehicle instantaneous velocity;

a [m/s?] — acceleration;

M, [kg] — vehicle mass (1400 kg on average for light vehicles in a city environment);

Rr [kN] — total force, including air drag and rolling resistance;
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R, =M -a+ F, + F,

F_ - rolling resistance force:

rr

F =C_-M, -g, (foreach tire)
C,, — rolling resistance coefficient, 0.15 on average for each tire
(depends on road surface)

F,, - air drag force:

a

F, =%-p-v2'A-Cd

p - air density (1.29 kg/m3)

A — frontal car area (2.1 m” on average for light vehicles)

C, — drag coeftficient (0.3 for a car)

f, [mL/s or g/s] — idle fuel consumption rate or gas emissions rate;

B, [mL or g per kJ] — fuel consumed or gas emitted per engine energy unit;

S, [mL or g per (kJ .m/s?)] — coefficient for fuel consumption or gas emissions per

unit of energy-acceleration, reflects the function behavior on positive acceleration.

The values of the last three parameters are given in the following table. They

are based on the work reported by Akcelik and Besley, presented in [11].

Ji B Yoz
Fuel consumption 1350 [mL/s] 900 [mL/kJ] 300 [mL/(kJ-m/s%)]
CcO 50 [g/s] 150 [g/kJ] 250 [g/(kJ-m/s%)]
HC 8 [g/s] 0 [g/k]] 4 [g/(kI-m/s%)]
NOx 2 [g/s] 10 [g/kJ] 2 [g/(kJ-m/s®)]

The CO, is calculated based on the fuel consumed:

AF(CO,) = AF (fuel)- fco,

where [, is the CO, emission rate given in grams per milliliter of fuel [g/mL].

Jeo,=2.5 g/mL for light vehicles
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Figure 7 Example of fuel consumption estimation for a vehicle that passes through an

intersection
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3.5. Performance study

As described above, three main parts can be distinguished in the simulation
process: mobility, simulator engine and emulation of the nodes’ application.
Optionally, the simulation may run with a graphical user interface we have
implemented, but additional time is consumed with display functions and the
synchronization mechanisms. The mobility model works as a micro-simulator. It
consumes time on moving each car independently, considering all the nearby cars that
may affect it and the traffic rules that apply. The simulator engine manages the events
queue and establishes communication between nodes. Each time a node sends a
message, the engine searches for all the cars in the node’s wireless range to deliver the
message. It performs a linear search on a limited set of elements around the
geographical position of the node, using the PeanoKey mechanism described in the

previous sections.
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Figure 8 Time measurements for the simulation process and its components, depending on the density
of vehicles. Test scenario: 10 km of highway with a traffic flows varying between 500 and 1500
vehicles/hour/lane.

The most time consuming part of the simulation is code emulation (Figure 3).
The TrafficView application, which functions on each node, has to parse all the
incoming messages, update the local vehicle records and create new messages for

broadcast. Figure 8 shows that for high densities, when the network is widely
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connected, messages are propagated easily from car to car and more than half of the

simulation time goes on processing the messages received by each of them.

Figure 9. UML class diagram of the simulator engine module (JAVA)
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3.6. Implementation Details

The UML class diagram in Figure 9 shows the core structure of the simulator
written in Java. The main class, Engine, manages the nodes of the network and the
interactions between them, which are triggered by events. The GUI and the
communication between nodes can be switched off for particular studies or
improvements in performance.

Each car node of the network is represented by the SimulatedCarInfo class
which extends the class Carlnfo, which contains basic data needed for representing
the car such as vehicle id, speed, latitude, longitude, direction, timestamp and a few
others. The timestamp is the time when the GPS device of that car got the data. The
class SimulatedCarInfo adds the methods that come with the TrafficView application
that runs on each node. The class also implements the Communicator interface which
contains the methods for needed for a node to communicate with the network. The
map is loaded into memory only once, as a global object, and all the entities in the
simulator may have access to the map structure. The methods that are called whenever
the state of a node needs to change are basically three:

— SimulatedCarInfo.update() — is called periodically, when the node’s new
position and speed are read from the GPS. The role of the GPS is
simulated by the mobility module which moves the vehicles on the map;

— SimulatedCarInfo.prepareMessage() — is called when the node is supposed
to send a message previously scheduled, either as a periodical or single
message.

— SimulatedCarlInfo.receive() — is called when a node receives a message
from another node. The engine decided that the node received this
message, based on its position and the message protocol address.

Each of these methods is called whenever the specific event occurs in the

engine. They are handlers that the engine knows to call when appropriate.

When the engine advances the simulation time, it pulls out from the main
event queue that it manages all the events for the new moment of time. The Event
class holds a time variable, for the moment when it will occur. This class is extended
by classes representing particular types of events that add more information; for

example, the Receive event has 2 communicators (a sender and a receiver) and the
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array of bytes that form the message. The SendEvent class is used for broadcasts, and
it is extended by UnicastSendEvent for one hop unicasts. The CleanupEvent is used to
when the cars need to cleanup their databases of old records. It replaces a cleanup
thread in the real TrafficView application.

The network also permits communication between nodes, other than cars, such
as infrastructure nodes. The WirelessTrafficLight class, used to implement the logic
described in the following section, also implements the Communicator interface, has a
geographical position and may communicate with the other nodes.

Finally, the engine receives input from the emissions and fuel consumption
module that is connected to the mobility model. Each time a car is moved on the map,
its speed an acceleration determine an estimation of the fuel consumption and

pollutant emission as previously described.
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4. Adaptive Signal Control Based on Wireless
Communications

For over thirty years now, efforts have been made to create traffic lights
systems that can respond to the ever increasing traffic. A first step in adapting traffic
lights to the traffic demand was signal timing according to the time of the day. This
solution is based on signal plans generated offline by traffic engineers and requires
consistent maintenance effort as traffic changes. A possible improvement represents
the use of input from sensors to select a signal plan that best suits the situation and
modify it online. A limitation of this strategy is encountered in situations where
events that influence traffic often occur, like touristic regions or intersections near
stadiums or malls. Fully adaptive or fully actuated traffic signals generate timing

plans online, based on input from sensors that measure traffic parameters.

This thesis examines the possibility of implementing an adaptive traffic light
system, based on wireless communication with the vehicles. It proposes the use of
network infrastructure nodes that can benefit from the information exchange in

TrafficView and get a clear real-time view of the traffic.

In the following section we will present the basic theoretical aspects that are
taken into account when designing signal control systems. Then, a brief history and
the current achievements in the field are discussed. In section 4.2 the design of
TrafficView Signal Control system is described. Finally we will present the
simulation tests cases we have run and the results we have obtained when using our

system.

4.1. Theoretical aspects

A timing plan for a signal control at an intersection is specified through three
parameters: cycle length, green splits and offsets. The cycle length is the time it takes
for a traffic light to pass through all its phases before it repeats the first phase. The

split of each phase is the duration of the phase expressed in percentage of the cycle
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length. The offset is the difference between the start times of green periods at two

adjacent intersections and is used for coordination between traffic lights.

There are several goals that can be taken into consideration when designing a

signal control mechanism [6]:
* minimizing the average delay of vehicles approaching an intersection

* increasing progression, by coordinating vehicle platoons between

intersections
» reducing the queue length of all approaches to an intersection

= maximizing overall throughput, by analyzing traffic at the intersection,

arterial or network level

Achieving two or more of these goals may be contradictory. For example,
increasing progression may not be the optimum for minimizing total delay, because

traffic on arterials is encouraged at the expense of congesting minor approaches.

However, we will consider the main measure of effectiveness (MOE) for an
intersection is the control delay, which is the component of the intersection delay
caused by the presence of the signal control [30]. It is measured in comparison with
the travel time calculated in the absence of a control mechanism. Another relevant

parameter is v/c or volume per capacity ratio which reflects the degree of saturation of

an approach to the intersection. For saturated intersections the degree of saturation is
calculated through the demand per capacity ratio which is greater than 1. The queue
length, calculated in number of cars, might also be an important parameter that would
help analyze the geometrical configuration of the intersection and detect downstream

congestions. Downstream congestions are traffic jams that occur immediately after

passing through an intersection, possibly caused by the queue at the next intersection.
This process seriously affects the traffic flow, or even freezes it, and may be also

referred to as starvation.

Minimizing the delay at intersections, suggests the selection of a cycle length
as short as possible, in order to produce less red time and shorter queues. The intuition

here is that the cycle length should be shortened until a critical value is reached, a
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value under which the overhead of phase changing starts to significantly influence the

delay. Figure 10 shows the behavior of delay vs. cycle length relation.

A Delay vs. Cycle Length
>
=
O
A
Optimum Cycle g
( Length Cycle Length

Figure 10. Typical shape of delay vs. cycle graph for an isolated intersection

In theory, the optimum cycle length is expressed with the Webster’s equation, as

a function of lost times and critical flow ratios:

C, = &, where:

1 &,
-y
Xc Zl“ s,
Co — Optimum cycle length;
L — Sum of lost times for all the phases;

n — is represents number of critical lane groups. A critical lane group is a group
of movements that can access the intersection concurrently;

— - is the maximum flow ratio for the critical lane group i
S.

1

——— is the desired degree of intersection utilization (1.0 for operation at full
C

capacity, usually 0.95).

31



The lost time is calculated as the sum of inter-green periods. The inter-green
period for a phase is the sum of yellow time and all-red time, and represents the
interval when usually no car enters the intersection. For an intersection with
pedestrian crossings, the sum of green time and inter-green time for one phase has to

be long enough to permit pedestrians to safely cross the street.

The flow ratio for a lane group is computed as the actual flow of the lane
group, for which the timing is considered, per saturation flow. The saturation flow is
calculated as the maximum number of vehicles that can enter the intersection, if the
signal would be green for an hour. A typical value for the saturation flow is 1900
vehicles per hour per lane, but there are several factors that can reduce this value, such
as narrow lanes, large number of turning movements, or large number of trucks and

busses.

In city environments, coordination between multiple intersections along
arterials is crucial. The goal of traffic lights coordination is to have large platoons of
vehicles move through a sequence of intersections without stopping. The intersections
can be best coordinated when they are uniformly spaced. Too great distances between
signals can cause the cars in platoons to spread, thus reducing the effect of

coordination.

Coordination of the traffic signals in a sequence of intersections means setting
an equal cycle length for all the signals. For optimum results this cycle length is
chosen by analyzing the critical intersection in the sequence, the one with the
maximum flow. Considering Webster’s formula presented above, the global cycle
length will be equal to the maximum of the optimum cycle length for each signal
along the path. If the cycle length of a signal differs significantly from the remaining
intersection, than it can function in using double or half of the value selected for the

other signals.
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4.2. Existing products and related research

The evolution of traffic signal control systems is divided into three generations:

= First Generation — The signal control systems in this category use pre-
calculated signal plans, generated offline, that are selected based on time of
the day. The plans change every 15 minutes and the devices are non-

computerized.

= Second Generation — These systems choose online the signal plans, based on
surveillance data and predicted values. Optimization of timing plans may
occur every 5 minutes but choosing new plans is limited to 10 minutes.
Usually the data is processed by a central computer that may implement

coordination between intersections.

» Third Generation — Fully responsive traffic control systems that also rely on
sensors, but can change the plans more rapidly (3-5 minutes). These systems
are more independent, having their own processing module, and may be part

of a distributed system that achieves coordination.

Thus, there are two different strategies to creating suitable signal control
systems. The first alternative is using offline optimization models that generate signal
plans for intersections based on simulations or input parameters. The other alternative
is online adaptive control systems that implement signal plans based on data from

sensors, running their algorithms online.

4.2.1. Offline timing optimization models

There are several software tools on the market, which are used in cities all over
the world to create timing plans based on input traffic measurements. The output of
these tools is used by traffic engineers to pre-set the traffic lights. Following we

describe the models behind the most important of these tools.

TRANSYT is a software program that implements a, so called, mesoscopic
traffic model for the analysis and optimizations of intersections and network of

intersections. A mesoscopic traffic model estimates at each moment of the simulation
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the traffic flow that enters each segment, the number of vehicles that stop at red lights,
or the number of vehicle that depart on green or the platoon formation along a street.
The optimization techniques TRANSYT uses try to reduce the total delay and the
number of stops of a network of intersections. This are the main MOE (measures of

effectiveness) this tool analyzes for the generated traffic flows.

In the signal optimization process, TRANSYT first searches through all possible
cycle lengths, and analyzes each value in order to find the best results. For each cycle
length it computes the green splits that produce equal saturation degrees on all
approaches. The splits are further optimized by searching the best solution around

these values, also taking into account offsets between adjacent signals [21].

The latest version uses genetic algorithms to find the most suitable sequence of

phases.

SYNCHRO is a tool that is widely accepted in USA and used to optimize
intersections all over the world. Its philosophy is to minimize a performance indicator
that is a function of delay, number of stops and queue length. The traffic model used
is similar to the model of TRANSYT. SYNCHRO analyses a group of intersection
limited to 10 for the simple version and to 300 for the distributed one [20].

The optimization process has several stages. Like TRANSYT it analyzes all
cycle lengths in a specified domain. The offsets and splits are optimized using a
search in steps: first with 4-second increments, then 2-second and finally 1 second.
For coordination between two adjacent intersections SYNCHRO calculates a factor
reflecting the extent to which they can be coordinated, based on link distance, travel

times and volume.

PASSER Il and V are similar optimization tools that uses a genetic algorithm
to find the best timing plans at several intersections along an arterial so they focus

mostly on coordination [6]
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4.2.2. Adaptive signal control systems

Several adaptive traffic control systems have been implemented for intersections
all over the world. The most important ones include Split, Cycle and Offset
Optimization Technique (SCOOT) [24], Sydney Coordinated Adaptive Traffic
System (SCATS) [22], Los Angeles Adaptive Traffic Control System (LA-ATCS),
Optimized Policies for Adaptive Control (OPAC) and Real-time Hierarchical
Optimized Distributed and Effective System (RHODES) [23].

SCOQOT [24] is the most widely used, with hundreds of installation worldwide.
It is based on loop detectors placed on every link to an intersection, usually at the
upstream end of the approach. Thus, based on the actual field demand, SCOOT
creates Cyclic Flow Profile (CFP) and models platoon movements, queue formation
and discharge. To measure demand, it uses LPUs (Link Profile Units), a fundamental

measure of flow and occupancy.

The optimization process takes place at central location, where all the data from
the monitored intersections arrive, and then timing plans are adjusted and sent back to
the traffic lights controllers in the intersections. There are three optimization stages:
Split Optimizer, Offset Optimizer and Cycle Optimizer. They work in small
increments that are evaluated according to a performance index, a function of
predicted delays and stops for the approaching vehicles. The Split Optimizer runs at
each phase change and analyzes how the modification of the current phase with up to
4 seconds (in any way) would influence performance. The Offset Optimizer runs once
per cycle and based on CFPs predicted for adjacent nodes may decide modifications
of the offset also with up to 4 seconds. The Cycle Optimizer runs periodically, every
five minutes, considering a group of coordinated intersections. A critical intersection
is identified in the group, and then an optimum cycle is calculated for a saturation
degree of 90%. The old cycle is modified with up to 16 seconds towards the new

calculated cycle.

For incident detection SCOOT has two special modules. ASTRID (Automatic
SCOOT Traffic Information Database) is a system that offers historical information

like daily flow profiles and expected congestion levels. INGRID or Integrated
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Incident Detection is a module that detects unusual events in the traffic that affect
traffic. It looks for sudden changes in flow and occupancy on a link or important
deviations from the historical data. Incidents are indicated when there is significant

decrease in flow and occupancy at the downstream detector.

Other systems, like SCATS, have detectors placed immediately before the stop
line at an intersection. Thus, it cannot get accurate data when the queue grows beyond
the length of the detector, or the link is over saturated. Since it uses a model based
especially on occupancy, it also has difficulties in differentiating between high flows
or intersection stoppage. Reported research shows poor performance when incidents

occur. [25]

RHODES suggests a hierarchical architecture of the control system. At the
highest level it predicts traffic flows at the vehicle and platoon resolution level. Then,
it allocates green based on various demand patterns and finally runs intersection
optimizations algorithms. The detectors are usually placed 200-300 feet upstream the

intersection, which may also represent a limitation for longer queues.

The problem of intersections management as a cooperation problem in a
distributed network has been intensively studied. Dresner and Stone propose a
reservation-based multiagent control policy for a simplified traffic model, which
allows car to schedule their intersection access [26]. However, their system assumes
margins of error more appropriate for automated driving the human drivers.
Coordinating traffic signals, which are agents in a distributed environment, has also
been implemented using evolutionary game theory techniques [28] or other self

organizing methods [27].
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4.3. System Design

The adaptive traffic light system we have designed relies especially on
wireless communication with the approaching vehicles. The controller listens to all
the information the cars are exchanging via the TrafficView dissemination protocol
(section 2.3), and forms an opinion on how crowded the intersection approaches are.
In a city environment, traffic lights in adjacent intersections may communicate
through a wired network, in order to provide each other with additional information.
The upstream signal, forwards to the downstream signal TrafficView packets of the
cars that enter the link between the two. Thus, the downstream intersection can decide
its timing based on information known in advance. This model is depicted in Figure
11. For every vehicle record received, the controller checks it against its local
database. If the vehicle wants to pass through the controlled intersection, and there is
no newer record about this vehicle in the database, the record will be stored and taken

when calculating link parameters (demand, queue length etc.).

vehicle 2

vehicle 3

vehicle 1

Figure 11. Adaptive Traffic Lights Control System based on wireless communication.

Our traffic signal control model uses several metrics to measure its efficiency,
such as average delay, queue length or number of stops. The existing models estimate
these metrics using complex mathematical models based on driver behavior
assumptions and statistical facts. The Highway Capacity Manual [30] is a complete
guide that explains these well accepted models and gives directions on applying them

in software tools that analyze traffic and in real traffic control devices. However, the
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real situations are very complex and traffic conditions depend on a large number of

variables so estimation models can sometimes have significant errors.

Our control method benefits from the wireless communication system with

vehicles and can measure accurately traffic metrics. Next we describe the most

important metrics we use and how are they computed by the system:

Control delay — is calculated for each car that passes through an
intersection. As mentioned in section 4.1 it is the difference between the
travel time that would have occurred in the absence of the intersection
control, and the travel time reported by a vehicle, in the presence of the
intersection control. At the simulator level the delay is calculated from the
moment the simulator determines a car to be influenced by the traffic light
either directly or indirectly through other cars that are slowing down. At
the controller application level, as it would be the case of a real device, this
delay is calculated from the moment the car and the controller agree that
the car has been influenced by the signal. The average delay over an

analysis period is the main measurement of effectiveness.

Queue length — is computed by the traffic controller, who knows the
traffic configuration at every moment. To find the end of the queue, it has
to check the database, and advance form car to car starting from the traffic
light, until a gap larger than threshold or a vehicle speed higher than a
threshold is encountered. The queue length value is saved at every 10
seconds and offered in the 95™ percentile form for a period of analysis (the

value greater than 95 % of the set).

The number of stops — is calculated for each car that passes through the
intersection; the traffic light knows the vehicle’s queuing time and pass
through time so it can compute the number of stops based on the timing

history.

The way the controller takes its timing decision is based on the volume per

capacity ratio, as described in section 4.1. It is important when calculating the

saturation degree of a link to differentiate between the volume and the demand of the

link. The volume is the traffic flow measured at the point where the cars enter the
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intersection. On the other hand, the demand is the traffic flow measured at a point
upstream of any queue that forms at the intersection, and reflects the number of cars
that desire to pass through the intersection. For example, SCOOT, the system
described in section 4.2.2, measures demand by placing the detectors at the upstream
end of the link and estimates the volume. In contrast, SCATS has the detectors placed
at the stop line, before entering an intersection, and calculates the volume and the

queue while it estimates the approach demand.

Our system maintains contact with the vehicles throughout the entire period
they are in a few miles range around the intersection, so it is able to measure
accurately both volume and demand. Due to the fact that, on a road, there may be gaps
of connectivity between vehicles, the system may rely when measuring the demand on

information sent by the adjacent traffic signal over a wired network.

The timing plan generation process takes place once, during each cycle and
establishes a plan for the following cycle based on the measured parameters. During a
cycle, further optimizations may occur, such as phase skipping, phase extension or

interruption. The timing generation procedure has two stages:
a. Phase sequence selection

In the first stage, a sequence of phases is selected, which suites the traffic demand
best. For this purpose the dual-ring concurrent phasing concept, illustrated Figure 12

is used.

Ring 1
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19 14
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Barrier

=
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Ring 2

Figure 12. The dual-ring concurrent phasing scheme
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Figure 12 shows the eight possible phases at a four-way intersection, one for
each left or right-through movement. The barrier separates the left-right movements
from the north-south ones. The dual-ring concurrent phasing concept states that each
phase in the top ring may run concurrently with any phase in the bottom ring as long

as they are on the same side of the barrier.

In normal conditions the controller starts with the classic two-phase signal
plan for a four-way intersection. If a few traffic conditions are met the traffic
controller may switch to a phase sequence with protected left movements. These
conditions are in conformity with the recommendations of the Highway Capacity
Manual 2000 that identifies two situations when protected left movements should be
used:

— the left turn has a demand over 240 vehicles/h over 1 hour or
— the cross product of left turn demand and opposing through demand for 1 hour
exceeds 50,000 for one opposing lane, 90,000 for two opposing through lanes,

or 110,000 for three or more

More than that, it can be assumed that the in-vehicle TrafficView application
may transmit to the signal controller information on turning intentions when a driver
signals. This allows our system to estimate the number of left turning vehicles in the
queue. According to this number considered for two opposing movements the
controller may decide to extend the green phase of an approach, to create a separate
phase for protected left movements or select other combination of phases with

protected left turn.
b. Signal plan generation

The first step of this stage is to calculate the cycle length using Webster’s
formula presented in section 4.1. For this, the system calculates the critical flow per
capacity ratio (v/c ratio) for each group of concurrent movements. The v/c ratio for a
link 1s considered as the link demand per link saturation flow. The critical ratio is the
maximum v/c ratio of the concurrent movements. The demand volume of each
approach is calculated once per cycle just before computing the cycle length and it is
considered for an analysis period. For the same period it is also calculated the service
volume, which is the number of vehicles that have entered the intersection. If the

demand is greater than the volume, a correction is applied, by adding the difference to
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the demand. This correction represents the number of cars that did not manage to pass

in the analyzed period so they have to be counted for the demand for the next period

Having a cycle length, the green splits for each phase are allocated to produce

equal degrees of saturation on each link. The formula that is used here is:

\%
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where G; is the green time for phase i, C is the cycle length, L the total lost time
during a cycle (yellow and all red times), and vi/s; the critical volume per capacity

ratio for the movements in phase i.

This preliminary signal plan is adjusted to meet various limitations such as a
maximum cycle length or pedestrian minimum green time. The green time for
pedestrians is usually calculated considering the average pedestrian speed of 4 ft/s, the
road width and a minimum WALK light time before the last pedestrian starts crossing

the road.

After the minimum green time for an approach has passed, which allowed
pedestrians to cross the conflicting approach(es), the phase may be interrupted if no
incoming vehicles are detected. On the other side, if the green phase for an approach
has finished, but cars keep coming while there is no demand on the conflicting
approach(es) the green phase may be extended until an acceptable pedestrians waiting
time. Another special event that may occur at the end of a green phase is when the
controller detects left turning vehicles with unusual waiting times, comparing to the
through movement. This may be because of high volumes on the opposing movement,
that cause the formation of a queue on the left lane, that may influence and cause
delays on the right-through movements as well. In this situation the green phase for
the approach with the left lane queue will be extended to allow protected left turns and

discharge the queue.
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Finally, after the new signal timing plan has been developed, the traffic light

may broadcast feedback messages for the incoming cars. These messages give

information on when the phase will switch and how large the queue is on each lane of

every approach. Feedback messages have several purposes:

1.

4.4,

They regulate the incoming traffic on an approach because in-vehicle
software can recommend appropriate speeds based on when the current
phase will end, and how many cars are already queued. This has an
obvious beneficial impact on safety as drivers know precisely if they can

pass or not on the current phase.

Delay in intersection is reduced because the drivers know in advance when
the phase changes and they can act accordingly (either avoid decelerating

too much on red or react faster on green).

Fuel consumption and pollutant emissions are reduced. In the situations
when the vehicles aren’t forced to stop because the drivers know they will
catch a green light, less acceleration occurs. It is known that the
acceleration and speed of a vehicle greatly influence the fuel consumed

(Figure 7)

Simulation results

In this section we present the test cases and the results we have obtained when

using our system. For testing, we have used the simulator described in section 3 and

ran hundreds of hours of simulation for each scenario. The results show that the

wireless adaptive solution managed to perform better in all the cases, when comparing

to the existing solutions.
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4.4.1. Test Case 1: Four-way Intersection in Bucharest

The first test scenario we evaluate is the intersection Iuliu Maniu / Vasile
Milea in Bucharest. We will study the operations at this intersection without
considering the effect of adjacent intersections. We will focus on comparing two types
of signal control strategies: pre-timed fixed signal control as it currently 