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Schedule for rest of semester

• 4/11/08 - Deadline for finalizing Assignment #4
—Send email to TA and me by tomorrow with your choices for

– Parallel Language
– Parallel Hardware
– Sequential program that you’d like to parallelize

 It can be the same as one of the previous assignments, but now
rewritten in a different parallel language

• 4/22/08 - In-class final exam

• 4/30/08 - Deadline for Assignment #4
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Acknowledgments for today’s lecture

• Slides accompanying course textbook
—http://www-users.cs.umn.edu/~karypis/parbook/

• John Mellor-Crummey --- COMP 422 slides from Spring 2007



4

Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components
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Terminology

• Graph G = (V,E)
—V is a finite set of points called vertices
—E is a finite set of edges

• Undirected graph
—edge e ∈ E

– unordered pair (u,v), where u,v ∈ V

• Directed graph
—edge (u,v) ∈ E

– incident from vertex u
– incident to vertex v

• Path from a vertex u to v
– a sequence <v0,v1,v2,…,vk> of vertices

 v0 = u, vk = v, and (vi, vi+1) ∈ E for i = 0, 1,…, k-1
—path length =  # of edges in a path
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Directed and Undirected Graph Examples

directed graphundirected graph
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More Terminology

• Connected undirected graph
—every pair of vertices is connected by a path.

• Forest: an acyclic graph

• Tree: a connected acyclic graph

• Weighted graph: graph with edge weights

• Common graph representations
—adjacency matrix
—adjacency list
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Adjacency Matrix for Graph G = (V,E)

• |V| x |V| matrix
—matrix element ai,j = 1 if nodes i and j share an edge; 0 otherwise
—for a weighted graph, ai,j = wi,j, the edge weight

• Requires Θ(|V|2) space

Adjacency matrix
representation

Undirected graph

adjacency matrix is

symmetric about the diagonal
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Adjacency List for Graph G = (V,E)

• An array Adj[1..|V|] of lists
—each list Adj[v] is a list of all vertices adjacent to v

• Requires Θ(|E|) space

Undirected graph

Adjacency list
representation
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Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components
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Minimum Spanning Tree

• Spanning tree of a connected undirected graph G
—subgraph of G that is a tree containing all the vertices of G
—if graph is not connected: spanning forest

• Weight of a subgraph in a weighted graph
— sum of the weights of the edges in the subgraph

• Minimum spanning tree (MST) for weighted undirected graph
—spanning tree with minimum weight
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Minimum Spanning Tree

Minimum spanning treeUndirected graph
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Computing a Minimum Spanning Tree
Prim's sequential algorithm

// initialize spanning tree vertices VT with vertex r, the designated root
// compute d[:], the
// weight between 
// r and each 
// vertex outside VT

// use d[:] to find u, 
// vertex closest to T

// add u to T
// recompute d[:] now 
// that u is in T

// while there are vertices outside T
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Parallel Formulation of Prim's Algorithm

• Parallelization prospects
—outer loop (|V| iterations): hard to parallelize

– adding 2 vertices to tree concurrently is problematic
—inner loop: relatively easy to parallelize

– consider which vertex is closest to MST in parallel

• Approach
—data partitioning

– partition adjacency matrix in a 1-D block fashion (blocks of columns)
– partition distance vector d accordingly

—in each step,
– process first identifies the locally closest node
– performs a global reduction to select globally closest node
– leader inserts node into MST
– broadcasts choice to all processes
– each process updates its part of d vector locally based on choice
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Parallel Formulation of Prim's Algorithm

distance array

adjacency matrix

partition d and A among p processes 
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Parallel Formulation of Prim's Algorithm

• Cost to select the minimum entry
— O(n/p): scan n/p local part of d vector on each processor
—O(log p) all-to-one reduction across processors

• Broadcast next node selected for membership
—O(log p)

• Cost of locally updating d vector
— O(n/p): replace d vector with min of d vector and matrix row

• Parallel time per iteration
—O(n/p + log p)

• Total parallel time
—O(n2/p + n log p)
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Minimum Spanning Tree: Prim's Algorithm

2 iterations of Prim’s algorithm

start with arbitrary root 
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Algorithms for Sparse Graphs

• Dense algorithms can be improved significantly if we make
use of the sparseness

• Example: Prim’s algorithm complexity
—can be reduced to O(|E| log n)

– use heap to maintain costs
– outperforms original as long as |E| = O(n2/ log n)

• Sparse algorithms: use adjacency list instead of matrix

• Partitioning adjacency lists is more difficult for sparse graphs
— do we balance number of vertices or edges?

• Parallel algorithms typically make use of graph structure or
degree information for performance



19

Algorithms for Sparse Graphs

Graph G = (V,E) is sparse if |E| is much smaller than |V|2

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident
edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a

random sparse graph.
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Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components
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Single-Source Shortest Paths

• Given weighted graph G = (V,E,w)

• Problem: single-source shortest paths
—find the shortest paths from vertex v ∈ V to all other vertices in V

• Dijkstra's algorithm: similar to Prim's algorithm
—maintains a set of nodes for which the shortest paths are known
—grows set by adding node closest to source using one of the

nodes in the current shortest path set
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Computing Single-Source Shortest Paths

Dijkstra's sequential single-source shortest paths algorithm.

// initialize tree vertices VT with vertex s, the designated src
// compute l[:], the
// weight between 
// s and each vertex ∉ VT 

// use l[:] to find u, 
// next vertex closest 
// src

// add u to T

// recompute l[:]
// now that u is in T

// while some vertices are not in VT

Dijkstra’s sequential algorithm
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Parallel Formulation of Dijkstra's Algorithm

Similar to parallel formulation of Prim's algorithm for MST

• Approach
—data partitioning

– partition weighted adjacency matrix in a 1-D block fashion
– partition distance vector L accordingly

—in each step,
– each process identifies its node closest to source
– perform a global reduction to select globally closest node
– broadcasts choice broadcast to all processes
– each process updates its part of L vector locally

• Parallel performance of Dijkstra's algorithm
— identical to that of Prim's algorithm

– parallel time per iteration: O(n/p + log p)
– total parallel time: O(n2/p + n log p)
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All-Pairs Shortest Paths

• Given  weighted graph G(V,E,w)

• Problem: all-pairs shortest paths
— find the shortest paths between all pairs of vertices vi, vj ∈ V

• Several algorithms known for solving this problem
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All-Pairs Shortest Path

Serial formulation using Dijkstra’s algorithm

• Execute n instances of the single-source shortest path
—one for each of the n source vertices

• Sequential time per source: O(n2)

• Total sequential time complexity: O(n3)
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All-Pairs Shortest Path

Parallel formulation using Dijkstra’s algorithm

Two possible parallelization strategies

• Source partitioned: execute each of the n shortest path
problems on a different processor

• Source parallel: use a parallel formulation of the shortest path
problem to increase concurrency
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All-Pairs Shortest Path Dijkstra's Algorithm

“Source partitioned” parallel formulation

• Use n processors
—each processor Pi finds the shortest paths from vertex vi to all

other vertices
– use Dijkstra's sequential single-source shortest paths algorithm

• Analysis
—requires no interprocess communication

– provided adjacency matrix is replicated at all processes
—parallel run time: Θ(n2)

• Algorithm is cost optimal
—asymptotically same # of ops in parallel as in sequential version

• However: can only use n processors (one per source)
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“Source parallel” parallel formulation
• Each of the shortest path problems is executed in parallel

—can therefore use up to n2 processors.

• Given p processors (p > n)
—each single source shortest path problem is executed by p/n

processors.

• Recall time for solving one instance of all-pair shortest path
—O(n2/p + n log p)

• Considering the time to do one instance on p/n processors

• Represents total time since each instance is solved in parallel

All-Pairs Shortest Path Dijkstra's Algorithm
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Single-Source Shortest Paths

• Dijkstra's algorithm, modified to handle sparse graphs is
called Johnson's algorithm.

• The modification accounts for the fact that the minimization
step in Dijkstra's algorithm needs to be performed only for
those nodes adjacent to the previously selected nodes.

• Johnson's algorithm uses a priority queue Q to store the
value l[v] for each vertex v ∈ (V – VT).
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Single-Source Shortest Paths:
Johnson's Algorithm

Johnson's sequential single-source shortest paths algorithm.
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Single-Source Shortest Paths: Parallel
Johnson's Algorithm

• Maintaining strict order of Johnson's algorithm generally
leads to a very restrictive class of parallel algorithms.

• We need to allow exploration of multiple nodes concurrently.
This is done by simultaneously extracting p nodes from the
priority queue, updating the neighbors' cost, and augmenting
the shortest path.

• If an error is made, it can be discovered (as a shorter path)
and the node can be reinserted with this shorter path.
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Single-Source Shortest Paths: Parallel
Johnson's Algorithm

An example of the modified Johnson's algorithm for processing unsafe
vertices concurrently.
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Single-Source Shortest Paths: Parallel
Johnson's Algorithm

• Even if we can extract and process multiple nodes from the
queue, the queue itself is a major bottleneck.

• For this reason, we use multiple queues, one for each
processor. Each processor builds its priority queue only
using its own vertices.

• When process Pi extracts the vertex u ∈ Vi, it sends a message
to processes that store vertices adjacent to u.

• Process Pj, upon receiving this message, sets the value of l[v]
stored in its priority queue to min{l[v],l[u] + w(u,v)}.
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Single-Source Shortest Paths: Parallel
Johnson's Algorithm

• If a shorter path has been discovered to node v, it is
reinserted back into the local priority queue.

• The algorithm terminates only when all the queues become
empty.

• A number of node paritioning schemes can be used to exploit
graph structure for performance.
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Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components
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Connected Components

Definition: equivalence classes of vertices under the “is
reachable from” relation for undirected graphs

Example: graph with three connected components

{1,2,3,4}, {5,6,7}, and {8,9}
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Connected Components

Serial depth-first search based algorithm

• Perform DFS on a graph to get a forest
—each tree in the forest = separate connected component.

Depth-first forest above obtained from depth-first traversal
of the graph at top. result = 2 connected components
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Connected Components Parallel Formulation

• Partition the graph across processors

• Step 1
—run independent connected component algorithms on each

processor
—result: p spanning forests.

• Step 2
—merge spanning forests pairwise until only one remains
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Connected Components Parallel Formulation

4. Merge the two spanning trees to form the final solution

1. Partition adjacency 
matrix of the graph G

 into two parts
Graph G

2. Each process gets
a subgraph of

 graph G

3. Each process computes 
the spanning forest 
of its subgraph of G
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Connected Components Parallel Formulation

• Merge pairs of spanning forests using disjoint sets of vertices

• Consider the following operations on the disjoint sets
—find(x)

– returns pointer to representative element of the set containing x
– each set has its own unique representative

—union(x, y)
– merges the sets containing the elements x and y
– the sets are assumed disjoint prior to the operation
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Connected Components Parallel Formulation

• To merge forest A into forest B
—for each edge (u,v) of A,

– perform find operations on u and v
 determine if u and v are in same tree of B

– if not, then union the two trees (sets) of B containing u and v
 result: u and v are in same set, which means they are connected

– else , no union operation is necessary.

• Merging forest A and forest B requires at most
—2(n-1) find operations
—(n-1) union operations

at most n-1 edges must be considered 
because A and B are forests
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Connected Components

Analysis of parallel 1-D block mapping

• Partition an n x n adjacency matrix into p blocks

• Each processor computes local spanning forest: Θ(n2/p)

• Merging approach
—embed a logical tree into the topology

– log p merging stages
– each merge stage takes time Θ(n)

—total cost due to merging is Θ(n log p)

• During each merging stage
—spanning forests are sent between nearest neighbors
—Θ(n) edges of the spanning forest are transmitted

• Parallel execution time
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Summary

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components


