
Vivek Sarkar

Department of Computer Science
Rice University

vsarkar@cs.rice.edu

 Parallel Graph Algorithms
(Chapter 10)

COMP 422 Lecture 24 10 April 2008

2

Schedule for rest of semester

• 4/11/08 - Deadline for finalizing Assignment #4
—Send email to TA and me by tomorrow with your choices for

– Parallel Language
– Parallel Hardware
– Sequential program that you’d like to parallelize

 It can be the same as one of the previous assignments, but now
rewritten in a different parallel language

• 4/22/08 - In-class final exam

• 4/30/08 - Deadline for Assignment #4

3

Acknowledgments for today’s lecture

• Slides accompanying course textbook
—http://www-users.cs.umn.edu/~karypis/parbook/

• John Mellor-Crummey --- COMP 422 slides from Spring 2007

4

Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components

5

Terminology

• Graph G = (V,E)
—V is a finite set of points called vertices
—E is a finite set of edges

• Undirected graph
—edge e ∈ E

– unordered pair (u,v), where u,v ∈ V

• Directed graph
—edge (u,v) ∈ E

– incident from vertex u
– incident to vertex v

• Path from a vertex u to v
– a sequence <v0,v1,v2,…,vk> of vertices

 v0 = u, vk = v, and (vi, vi+1) ∈ E for i = 0, 1,…, k-1
—path length = # of edges in a path

6

Directed and Undirected Graph Examples

directed graphundirected graph

7

More Terminology

• Connected undirected graph
—every pair of vertices is connected by a path.

• Forest: an acyclic graph

• Tree: a connected acyclic graph

• Weighted graph: graph with edge weights

• Common graph representations
—adjacency matrix
—adjacency list

8

Adjacency Matrix for Graph G = (V,E)

• |V| x |V| matrix
—matrix element ai,j = 1 if nodes i and j share an edge; 0 otherwise
—for a weighted graph, ai,j = wi,j, the edge weight

• Requires Θ(|V|2) space

Adjacency matrix
representation

Undirected graph

adjacency matrix is

symmetric about the diagonal

9

Adjacency List for Graph G = (V,E)

• An array Adj[1..|V|] of lists
—each list Adj[v] is a list of all vertices adjacent to v

• Requires Θ(|E|) space

Undirected graph

Adjacency list
representation

10

Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components

11

Minimum Spanning Tree

• Spanning tree of a connected undirected graph G
—subgraph of G that is a tree containing all the vertices of G
—if graph is not connected: spanning forest

• Weight of a subgraph in a weighted graph
— sum of the weights of the edges in the subgraph

• Minimum spanning tree (MST) for weighted undirected graph
—spanning tree with minimum weight

12

Minimum Spanning Tree

Minimum spanning treeUndirected graph

13

Computing a Minimum Spanning Tree
Prim's sequential algorithm

// initialize spanning tree vertices VT with vertex r, the designated root
// compute d[:], the
// weight between
// r and each
// vertex outside VT

// use d[:] to find u,
// vertex closest to T

// add u to T
// recompute d[:] now
// that u is in T

// while there are vertices outside T

14

Parallel Formulation of Prim's Algorithm

• Parallelization prospects
—outer loop (|V| iterations): hard to parallelize

– adding 2 vertices to tree concurrently is problematic
—inner loop: relatively easy to parallelize

– consider which vertex is closest to MST in parallel

• Approach
—data partitioning

– partition adjacency matrix in a 1-D block fashion (blocks of columns)
– partition distance vector d accordingly

—in each step,
– process first identifies the locally closest node
– performs a global reduction to select globally closest node
– leader inserts node into MST
– broadcasts choice to all processes
– each process updates its part of d vector locally based on choice

15

Parallel Formulation of Prim's Algorithm

distance array

adjacency matrix

partition d and A among p processes

16

Parallel Formulation of Prim's Algorithm

• Cost to select the minimum entry
— O(n/p): scan n/p local part of d vector on each processor
—O(log p) all-to-one reduction across processors

• Broadcast next node selected for membership
—O(log p)

• Cost of locally updating d vector
— O(n/p): replace d vector with min of d vector and matrix row

• Parallel time per iteration
—O(n/p + log p)

• Total parallel time
—O(n2/p + n log p)

17

Minimum Spanning Tree: Prim's Algorithm

2 iterations of Prim’s algorithm

start with arbitrary root

18

Algorithms for Sparse Graphs

• Dense algorithms can be improved significantly if we make
use of the sparseness

• Example: Prim’s algorithm complexity
—can be reduced to O(|E| log n)

– use heap to maintain costs
– outperforms original as long as |E| = O(n2/ log n)

• Sparse algorithms: use adjacency list instead of matrix

• Partitioning adjacency lists is more difficult for sparse graphs
— do we balance number of vertices or edges?

• Parallel algorithms typically make use of graph structure or
degree information for performance

19

Algorithms for Sparse Graphs

Graph G = (V,E) is sparse if |E| is much smaller than |V|2

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident
edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a

random sparse graph.

20

Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components

21

Single-Source Shortest Paths

• Given weighted graph G = (V,E,w)

• Problem: single-source shortest paths
—find the shortest paths from vertex v ∈ V to all other vertices in V

• Dijkstra's algorithm: similar to Prim's algorithm
—maintains a set of nodes for which the shortest paths are known
—grows set by adding node closest to source using one of the

nodes in the current shortest path set

22

Computing Single-Source Shortest Paths

Dijkstra's sequential single-source shortest paths algorithm.

// initialize tree vertices VT with vertex s, the designated src
// compute l[:], the
// weight between
// s and each vertex ∉ VT

// use l[:] to find u,
// next vertex closest
// src

// add u to T

// recompute l[:]
// now that u is in T

// while some vertices are not in VT

Dijkstra’s sequential algorithm

23

Parallel Formulation of Dijkstra's Algorithm

Similar to parallel formulation of Prim's algorithm for MST

• Approach
—data partitioning

– partition weighted adjacency matrix in a 1-D block fashion
– partition distance vector L accordingly

—in each step,
– each process identifies its node closest to source
– perform a global reduction to select globally closest node
– broadcasts choice broadcast to all processes
– each process updates its part of L vector locally

• Parallel performance of Dijkstra's algorithm
— identical to that of Prim's algorithm

– parallel time per iteration: O(n/p + log p)
– total parallel time: O(n2/p + n log p)

24

All-Pairs Shortest Paths

• Given weighted graph G(V,E,w)

• Problem: all-pairs shortest paths
— find the shortest paths between all pairs of vertices vi, vj ∈ V

• Several algorithms known for solving this problem

25

All-Pairs Shortest Path

Serial formulation using Dijkstra’s algorithm

• Execute n instances of the single-source shortest path
—one for each of the n source vertices

• Sequential time per source: O(n2)

• Total sequential time complexity: O(n3)

26

All-Pairs Shortest Path

Parallel formulation using Dijkstra’s algorithm

Two possible parallelization strategies

• Source partitioned: execute each of the n shortest path
problems on a different processor

• Source parallel: use a parallel formulation of the shortest path
problem to increase concurrency

27

All-Pairs Shortest Path Dijkstra's Algorithm

“Source partitioned” parallel formulation

• Use n processors
—each processor Pi finds the shortest paths from vertex vi to all

other vertices
– use Dijkstra's sequential single-source shortest paths algorithm

• Analysis
—requires no interprocess communication

– provided adjacency matrix is replicated at all processes
—parallel run time: Θ(n2)

• Algorithm is cost optimal
—asymptotically same # of ops in parallel as in sequential version

• However: can only use n processors (one per source)

28

“Source parallel” parallel formulation
• Each of the shortest path problems is executed in parallel

—can therefore use up to n2 processors.

• Given p processors (p > n)
—each single source shortest path problem is executed by p/n

processors.

• Recall time for solving one instance of all-pair shortest path
—O(n2/p + n log p)

• Considering the time to do one instance on p/n processors

• Represents total time since each instance is solved in parallel

All-Pairs Shortest Path Dijkstra's Algorithm

29

Single-Source Shortest Paths

• Dijkstra's algorithm, modified to handle sparse graphs is
called Johnson's algorithm.

• The modification accounts for the fact that the minimization
step in Dijkstra's algorithm needs to be performed only for
those nodes adjacent to the previously selected nodes.

• Johnson's algorithm uses a priority queue Q to store the
value l[v] for each vertex v ∈ (V – VT).

30

Single-Source Shortest Paths:
Johnson's Algorithm

Johnson's sequential single-source shortest paths algorithm.

31

Single-Source Shortest Paths: Parallel
Johnson's Algorithm

• Maintaining strict order of Johnson's algorithm generally
leads to a very restrictive class of parallel algorithms.

• We need to allow exploration of multiple nodes concurrently.
This is done by simultaneously extracting p nodes from the
priority queue, updating the neighbors' cost, and augmenting
the shortest path.

• If an error is made, it can be discovered (as a shorter path)
and the node can be reinserted with this shorter path.

32

Single-Source Shortest Paths: Parallel
Johnson's Algorithm

An example of the modified Johnson's algorithm for processing unsafe
vertices concurrently.

33

Single-Source Shortest Paths: Parallel
Johnson's Algorithm

• Even if we can extract and process multiple nodes from the
queue, the queue itself is a major bottleneck.

• For this reason, we use multiple queues, one for each
processor. Each processor builds its priority queue only
using its own vertices.

• When process Pi extracts the vertex u ∈ Vi, it sends a message
to processes that store vertices adjacent to u.

• Process Pj, upon receiving this message, sets the value of l[v]
stored in its priority queue to min{l[v],l[u] + w(u,v)}.

34

Single-Source Shortest Paths: Parallel
Johnson's Algorithm

• If a shorter path has been discovered to node v, it is
reinserted back into the local priority queue.

• The algorithm terminates only when all the queues become
empty.

• A number of node paritioning schemes can be used to exploit
graph structure for performance.

35

Topics for Today

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components

36

Connected Components

Definition: equivalence classes of vertices under the “is
reachable from” relation for undirected graphs

Example: graph with three connected components

{1,2,3,4}, {5,6,7}, and {8,9}

37

Connected Components

Serial depth-first search based algorithm

• Perform DFS on a graph to get a forest
—each tree in the forest = separate connected component.

Depth-first forest above obtained from depth-first traversal
of the graph at top. result = 2 connected components

38

Connected Components Parallel Formulation

• Partition the graph across processors

• Step 1
—run independent connected component algorithms on each

processor
—result: p spanning forests.

• Step 2
—merge spanning forests pairwise until only one remains

39

Connected Components Parallel Formulation

4. Merge the two spanning trees to form the final solution

1. Partition adjacency
matrix of the graph G

 into two parts
Graph G

2. Each process gets
a subgraph of

 graph G

3. Each process computes
the spanning forest
of its subgraph of G

40

Connected Components Parallel Formulation

• Merge pairs of spanning forests using disjoint sets of vertices

• Consider the following operations on the disjoint sets
—find(x)

– returns pointer to representative element of the set containing x
– each set has its own unique representative

—union(x, y)
– merges the sets containing the elements x and y
– the sets are assumed disjoint prior to the operation

41

Connected Components Parallel Formulation

• To merge forest A into forest B
—for each edge (u,v) of A,

– perform find operations on u and v
 determine if u and v are in same tree of B

– if not, then union the two trees (sets) of B containing u and v
 result: u and v are in same set, which means they are connected

– else , no union operation is necessary.

• Merging forest A and forest B requires at most
—2(n-1) find operations
—(n-1) union operations

at most n-1 edges must be considered
because A and B are forests

42

Connected Components

Analysis of parallel 1-D block mapping

• Partition an n x n adjacency matrix into p blocks

• Each processor computes local spanning forest: Θ(n2/p)

• Merging approach
—embed a logical tree into the topology

– log p merging stages
– each merge stage takes time Θ(n)

—total cost due to merging is Θ(n log p)

• During each merging stage
—spanning forests are sent between nearest neighbors
—Θ(n) edges of the spanning forest are transmitted

• Parallel execution time

43

Summary

• Terminology and graph representations

• Minimum spanning tree, Prim's algorithm

• Shortest path, Dijkstra’s algorithm, Johnson’s algorithm

• Connected components

