
PDAD

Parallel Data Analysis Diff

Cristina Băsescu

Claudiu Gheorghe

SCPD

Motivation

• IT reached a turning point in its evolution

• We have to think in terms of ‘the power of the
group’

• Many applications (intrisically) suitable for
distributed processing distributed processing
– Data processing

– Anything that needs to scale

• what framework/paradigm/programming
language/library is suitable for developing the
application?

Goals

• Answering the previous slide question ☺

• Tools
– Hadoop’s MapReduce

– Hadoop’s Pig

– MPI– MPI

• Comparison between them regarding
– Performance

– Productivity

– Scalability

– Portability

– Tuning

Applications

• Statistics on large amount of data

• Structured, real, large (tens of GB) input data:

Inria Failure Trace Archive

• Frequent fault reasons • Frequent fault reasons

• Most frequent causes of failures depending
on job duration

• Frequent end reasons for events

• Number of failures for each geographical
location

Approach – a typical JOIN

• Number of failures for each geographical
location

(platform_id, node_id, ...) X (platform_id, node_id, location)

• MapReduce: 2 jobs
• Mapper reads both files, emits (platform_id;node_id,1) and • Mapper reads both files, emits (platform_id;node_id,1) and

(platform_id;node_id,location)

• Combiner emits (platform_id;node_id,x) and
(platform_id;node_id,location)

• Reducer emits multiple (location,y)

• Mapper – indetity

• Combiner and Reducer sum up the values, emit (location,z)

Approach – a typical JOIN (2)

• Pig: straight forward join keyword

• MPI: complex master-slave design
• Master keeps the smaller file in memory • Master keeps the smaller file in memory

• Explicit distribution of the other file

• Slaves computes events

• queries the master about location corresponding to

(platform_id, node_id)

Our cluster

Tuning parameters

• MapReduce
– Number of mappers

– Number of reducers

– Replication factor

• Pig – none • Pig – none

• MPI
– Message length and frequence

– Overlap IO and computation

– Synchronization

– MPI2: dynamic process creation, parallel IO

Results (1) – throughput

Results (2) – MapReduce vs Pig

Cluster utilization (1) – slaves at work

Cluster utilisation (2) – slaves at work

Conclusion

• Portability
• Definitely Hadoop

• MPI depends on RTS and implementation

• Productivity
• MapReduce – an engineer’s choice• MapReduce – an engineer’s choice

• Pig – fast development

• MPI – too low-level, error-prone

• Scalability
• Hadoop distributed fairly the jobs

• MPI’s communication might be a bottleneck

• Hadoop’s HDFS is a big advantage over MPI

Questions ?

