PDAD
Parallel Data Analysis Dift

Cristina Basescu
Claudiu Gheorghe

SCPD

Motivation

* |T reached a turning point in its evolution

* We have to think in terms of ‘the power of the
group’

* Many applications (intrisically) suitable for
distributed processing
— Data processing
— Anything that needs to scale

* what framework/paradigm/programming

language/library is suitable for developing the
application?

Goals

* Answering the previous slide question ©

* Tools
— Hadoop’s MapReduce
— Hadoop's Pig
— MPI
* Comparison between them regarding
— Performance
— Productivity
— Scalability
— Portability
— Tuning

Applications

* Statistics on large amount of data
 Structured, real, large (tens of GB) input data:
Inria Failure Trace Archive

* Frequent fault reasons

* Most frequent causes of failures depending
on job duration

* Frequent end reasons for events

* Number of failures for each geographical
location

Approach — a typical JOIN

* Number of failures for each geographical

location
(platform_id, node_id, ...) X (platform_id, node_.id, location)

* MapReduce: 2 jobs

* Mapper reads both files, emits (platform_id;node_id,1) and
(platform_id;node_id,location)

e Combiner emits (platform_id;node_id,x) and
(platform_id;node_id,location)

* Reducer emits multiple (location,y)
* Mapper - indetity
e Combiner and Reducer sum up the values, emit (location,z)

Approach — a typical JOIN (2)

* Pig: straight forward join keyword

* MPI: complex master-slave design
* Master keeps the smaller file in memory
* Explicit distribution of the other file
* Slaves computes events

* gueries the master about location corresponding to
(platform_id, node_id)

Our cluster

=== switch
I gigabit eth
link

test scenario #1

mm-

Tuning parameters

 MapReduce
— Number of mappers
— Number of reducers
— Replication factor
* Pig-none
 MPI
— Message length and frequence
— Overlap 10 and computation
— Synchronization
— MPI2: dynamic process creation, parallel 10

Results (1) — throughput

Throughput (MB/s)
microsoft

grid 5000

lanl

B Throughput (MB/s)

time(s)

M time(s)

Size (MB)

Results (2) — MapReduce vs Pig

eeeeeeeeee

Cluster utilization

— slaves at work

SYELEMIMOMNtor

Monitor Edit View Help

System | Pracesses| Fesources||File Systems |

CPU History

L
€8 smconds

[crul 95.0%

Memory and Swap History

100 %

: EL)
I cruz 97.0%

&8 smconds

¢

Network History
B A 1 e e

Mermary
938.3 MiB (46,3 %) of 2.0 GiB

320 MiBrs
4.0 MiBs

160 MiBrs

o A -

0 MiEs

Swap
38,7 MiB (1.9 %) of 2,0 GiB

€0 seconds
Receiving
Total Received

30.4 MiBjs
39GE

296.2 KiBfs
51.2 MiB

Sending
Total Sent

Cluster utilisation (2) — slaves at work

System Monitor,

Monitor Edit View Help

System Pmcessesléﬁg_s.qy[ggﬁ: File Systems

CPU History
100 %

B %

&0 %

0%

e
©0 secands 50 w0

[crul 59.0%] cruz 51.5%

Memory and Swap History
e

‘ Mermory Swap
632,0 MiE (31.2 %) of 2.0 GiB 38,7 MiB (1.9 %) of 2,0 GiB

Metwork History
0.0 M e er s s e

5.0 Migs
.0 Migrs

20 Midis

0.0 Migfs .
€0 pazands

* Receiving 24.0 KiBfs * Sending 3.1 MiBfs
Total Received 246.0 MiB Total Sent 332.3 MiB

Conclusion

Portability

 Definitely Hadoop
* MPI depends on RTS and implementation

* Productivity

* MapReduce - an engineer’s choice
 Pig - fast development
* MPI - too low-level, error-prone

 Scalability

» Hadoop distributed fairly the jobs
* MPI's communication might be a bottleneck

* Hadoop’s HDFS is a big advantage over MPI

Questions ?

- TiEREED

