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Motivation

* |T reached a turning point in its evolution

* We have to think in terms of ‘the power of the
group’

* Many applications (intrisically) suitable for
distributed processing
— Data processing
— Anything that needs to scale

* what framework/paradigm/programming

language/library is suitable for developing the
application?



Goals

* Answering the previous slide question ©

* Tools
— Hadoop’s MapReduce
— Hadoop's Pig
— MPI
* Comparison between them regarding
— Performance
— Productivity
— Scalability
— Portability
— Tuning



Applications

* Statistics on large amount of data
 Structured, real, large (tens of GB) input data:
Inria Failure Trace Archive

* Frequent fault reasons

* Most frequent causes of failures depending
on job duration

* Frequent end reasons for events

* Number of failures for each geographical
location



Approach — a typical JOIN

* Number of failures for each geographical

location
(platform_id, node_id, ...) X (platform_id, node_.id, location)

* MapReduce: 2 jobs

* Mapper reads both files, emits (platform_id;node_id,1) and
(platform_id;node_id,location)

e Combiner emits (platform_id;node_id,x) and
(platform_id;node_id,location)

* Reducer emits multiple (location,y)
* Mapper - indetity
e Combiner and Reducer sum up the values, emit (location,z)



Approach — a typical JOIN (2)

* Pig: straight forward join keyword

* MPI: complex master-slave design
* Master keeps the smaller file in memory
* Explicit distribution of the other file
* Slaves computes events

* gueries the master about location corresponding to
(platform_id, node_id)
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Tuning parameters

 MapReduce
— Number of mappers
— Number of reducers
— Replication factor
* Pig-none
 MPI
— Message length and frequence
— Overlap 10 and computation
— Synchronization
— MPI2: dynamic process creation, parallel 10



Results (1) — throughput
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Results (2) — MapReduce vs Pig
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Cluster utilization

— slaves at work
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Cluster utilisation (2) — slaves at work
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Conclusion

Portability

 Definitely Hadoop
* MPI depends on RTS and implementation

* Productivity

* MapReduce - an engineer’s choice
 Pig - fast development
* MPI - too low-level, error-prone

 Scalability

» Hadoop distributed fairly the jobs
* MPI's communication might be a bottleneck

* Hadoop’s HDFS is a big advantage over MPI



Questions ?
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