
GmImgProcGmImgProc

Alexandra OlteanuAlexandra Olteanu SCPDSCPD

Alexandru Alexandru ŞŞteftefăănescunescu SCPDSCPDAlexandru Alexandru ŞŞteftefăănescunescu SCPDSCPD

Image processing for OCR and content extraction

Implies a set of costly operations like:

- Binarization – the resulted image is formed by two classes
separated by a threshold t : foreground and background

- Noise detection

- Clustering for creating meta-entities (ex: characters, lines)- Clustering for creating meta-entities (ex: characters, lines)

- Detection and/or classification of page components: line, table,

character, frame, image, etc

- Skew Detection and correction

- Geometrical distortions correction

- And the list may continue

For this project our aim was to implement methods for image binarization

and to try different solutions to improve our results and to remove noise:and to try different solutions to improve our results and to remove noise:
• Otsu 1D

• Otsu 2D

• Niblack

• Color Uniformization

Input (grayscale)

Otsu 1D

Otsu 2D

Niblack

Color Uniformization (intermediate grayscale)

Color Uniformization + Otsu 1D

Otsu 1D

Otsu method is based on a very simple idea: find the threshold that minimizes the

weighted within-class variance, defined as a weighted sum of variances of the two classes.

• ωi are the probabilities of the two classes separated by a threshold t

• are variances of these classes

This can be demonstrated to be the same as maximizing the between-class variance.

where µi represent the class means

Advantages:

This method is fast because operates directly on the gray level histogram.

It provides very good results when the numbers of pixels in each class

are close to each other.

where µi represent the class means

Implementation: we simply compute the class means and their probabilities

Otsu 1D parallelization using OpenMP

1562

12031400

1600

1800
P

ro
ce

ss
in

g
 T

im
e

 (
m

s)
1 ONT 2 ONT 3 ONT 4 ONT

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

406
297

1203

282

1123

273

1015

0

200

400

600

800

1000

1200

1400

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

1 ONT 406 1562

2 ONT 297 1203

3 ONT 282 1123

4 ONT 273 1015

ONT = OMP_NUM_THREADS

Observations

� granularity => good

� fast serial algorithm => low speedup

� load balance => good� load balance => good

Profiling results:

� CPU time utilization => very good

� hot spot => histogram computation

Otsu 2D

�considers both the gray value of a pixel and the average gray value of it neighborhood

�pixels are partitioned into two classes by a threshold pair (s, t), where s is gray level of

a pixel and t it's local average gray level

�Otsu 2D method is based on the same principles as classic Otsu

�it uses the two dimensional histogram

�by using the trace of the between-class variance matrix as the measurement of between

class variance and maximizing it we select the corresponding threshold (s, t) for this value.

Implementation: we use a fast recursive algorithm to implement Otsu 2D method.

Advantages:

• more robust to noise than Otsu 1D

• provides very good results when the numbers of pixels in each class

are close to eachother

Otsu 2D parallelization using OpenMP

52516

50000

60000

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

1 ONT 2 ONT 3 ONT 4 ONT

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

13187

4891

18672

5109

22766

5141

18797

0

10000

20000

30000

40000

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

1 ONT 13187 52516

2 ONT 4891 18672

3 ONT 5109 22766

4 ONT 5141 18797

ONT = OMP_NUM_THREADS

Observations

� in OpenMP 2.5 and in earlier versions the nested

parallelism can be exploit only by using nested

parallel regions

� granularity => good� granularity => good

� atomic constructs introduce synchronization

overhead

� load imbalance – conditional instructions

Profiling results:

� hot spot => local average gray level computation� hot spot => local average gray level computation

Otsu 2D tuned with OpenCL

CPU: Intel Core 2 Duo, T7500, 2. 2 GHz, 1.99 GB RAM - Display Mobile Intel(R) 965

OpenCL (seconds) Serial (seconds)

Image size 11 MB 44 MB 62 MB 11 MB 44 MB 62 MBImage size 11 MB 44 MB 62 MB 11 MB 44 MB 62 MB

Transform data into

CL structures
0.438 1.735 1.765

Create CL context,

buffers etc.
0.5 0.421 0.453

Runtime 0.953 3.094 3.141 2.937 11.672 11.859

Copy computed data

from CL structures

into app structures

0.156 0.641 0.719

into app structures

TOTAL time 2.781 9.359 9.547 3.344 13.297 13.453

Helped by Iulian Milas☺☺☺☺

Niblack

Niblack’s method is a local threshold binarization method which involves computing for

each pixel in the grayscale image the mean and standard deviation of the colors of

the neighboring pixels in an area (window) of predefined size. The threshold for the neighboring pixels in an area (window) of predefined size. The threshold for

determining if the pixel will be black or white is computed by the formula:

where k is a constant, preselected coefficient.

Implementation: We simply slide the window onto each pixel and recompute

the mean and standard deviation.

Assessment: Assessment:

• does not involve a unique threshold for the entire image and thus is adaptable for

local particularities

• had worst results in our tests, despite being considered the best binarization method

for text images

• is much slower than other methods.

Niblack parallelization using OpenMP

76313

70000

80000

90000

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

1 ONT 2 ONT 3 ONT 4 ONT

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

19297
10172

41282

7328

28860

5938

22891

0

10000

20000

30000

40000

50000

60000

70000

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

1 ONT 19297 76313

2 ONT 10172 41282

3 ONT 7328 28860

4 ONT 5938 22891

ONT = OMP_NUM_THREADS

Observations

� granularity => good

� trivial to parallelize

� each iteration is completely independent � each iteration is completely independent

on the rest

� load balancing easy to achieve

� CPU wait time practically zero

(except for I/O)

Profiling results:Profiling results:

� hot spot => computing mean and stdev

Image color uniformization

� is a preprocessing technique for grayscale images before the binarization step.

� creates an intermediate grayscale image which binarized with global methods like

Otsu 1D or Otsu 2D produces better results than without the preprocessing

� the main idea is to “diffuse” color differences weighted by distances between � the main idea is to “diffuse” color differences weighted by distances between

neighboring pixels

� each pixel in the intermediate image is computed using the following sum, for the

pixels in a neighboring area (window) of predefined size:

for every pixel of coordinated (x’, y’) located in the window W centered in (x, y)

� in the end, the sums are scaled to 0 – 255 to correspond to a level of gray.� in the end, the sums are scaled to 0 – 255 to correspond to a level of gray.

Implementation: We simply slide the window onto each pixel and recompute

the mean and standard deviation.

Assessment:

• obtained a great improvement in the image binarized with Otsu 1D and Otsu 2D

using this preprocessing step as compared to binarizing without it.

• similar to Niblack’s method, it is very slow.

Parallelization of Color Uniformization algorithm with OpenMP

162751

140000

160000

180000

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

1 ONT 2 ONT 3 ONT 4 ONT

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

41938

22828

95282

16938

64360

15110

56203

0

20000

40000

60000

80000

100000

120000

140000

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

11,1 MB (3565 x 4383 px) 43,0 MB (7130 x 8765 px)

1 ONT 41938 162751

2 ONT 22828 95282

3 ONT 16938 64360

4 ONT 15110 56203

ONT = OMP_NUM_THREADS

Observations

� similar to Niblack’s method

� granularity => good

� each iteration is completely independent

on the reston the rest

� CPU wait time practically zero

(except for I/O)

Profiling results:

� hot spot => computing the sum

Conclusions (what we’ve learned!)

OpenMP:

� reducing false sharing => making use of private data as much as possible

� parallelize at the highest level possible

� make parallel regions as large as possible to reduce parallelization overhead

� use CRITICAL sections for fine-grained locking� use CRITICAL sections for fine-grained locking

� the work should be distributed evenly across the threads

� NOWAIT clause => to eliminate redundant or unnecessary barriers

� we also compiled with Intel C++ but we obtained similar results

(but we hated it)

� profiling was made on a two core system

OpenCL:

� very fast

� does not support bidimensional arrays

� setting up the OpenCL kernel for running is very complicated

Q&AQ&A

..and autographs..and autographs

