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ABSTRACT
Minimum Spanning Tree (MST) is one of the well  
known  classical  graph  problems.  It  has  many 
applications in VLSI layout and routing, wireless  
communication  and  various  other  fields.  In  this  
paper, we present a new parallel Prim algorithm 
targeting SMP with shared address space. We use  
the  cut  property  of  graphs  to  grow  trees  
simultaneously in multiple threads and a merging  
mechanism when threads collide. We also present  
two new heuristics  and a simple  load balancing  
scheme  to  improve  the  performance  of  the 
algorithm.

1. INTRODUCTION
Minimum Spanning Tree(MST) problem is defined 
as follows: Given an undirected connected graph 
with  weighted  edges,  find  a  spanning  tree  of 
minimum total weight.

A  fundamental  property  that  we  use  in  our 
algorithm is the  Cut property of MST.  For any 
cut  C in  the  graph,  the  edge  with  the  smallest 
weight in the cut belongs to all MSTs of the graph. 
Such a minimum weight cut edge for a cut is called 
a  light edge. If  there are multiple edges with the 
same smallest cost, at least one of them will be in 
the MST.
                                                                              
MST  problem  has  applications  in  network 
organization,  touring  problems,  VLSI  routing 
problem, partitioning data points into clusters and 
various other  fields.  There exist  many serial  and 
parallel algorithms for the MST problem. The first 
serial  algorithm  for  finding  MST  was  given  by 
Borůvka [2]. Other two commonly used algorithms 
are Kruskal's algorithm and Prim’s algorithm [1]. 
Most of the existing Parallel algorithms are based 
on Borůvka's  algorithm. Examples  are Chung et. 
al.  [3]  and Chong et.  al.  [4].   Recently a  hybrid 
approach  (of  Prim  and  Borůvka)  was  used  by 
Bader  et.  al.  [5].  There  are  several  parallel 
formulations of Prim’s algorithm [5, 6]. 

In  this  paper  we  design  and  implement  a  new 
Parallel  Prim  algorithm  for  the  MST  problem 
targeting   SMP  with  shared  memory.  We  use 
multiple threads to run algorithm in parallel. The 
algorithm  non-deterministically  chooses  a  node 

and sets it as root. Each thread starts growing a tree 
in parallel  by colouring the nodes with a unique 
colour  (called  its  id).  When a  collision  occurs(a 
thread likes to add a node that belongs to another 
tree), one of the thread sends a signal to other and 
we merge these trees using a MergeTree operation. 
We force the tree grown by the thread with larger-
id  to  merge  with  tree  grown  by  a  thread  with 
smaller-id.  Eventually,  thread  0  will  have  the 
MST.  The  threads  are  assumed  to  have   the 
capability to   send  asynchronous  signals  to  each 
other.

2. RELATED WORK
There  are  several  parallel  implementations  of 
Prim’s algorithm. Kumar et. al. [6] pointed out that 
the main outer  while  loop of  serial  Prim is very 
difficult to run in parallel. But one can find nearest 
outside  node  in   parallel  by Min-Reduction  and 
also the update-keys step can be done in parallel. 
The adjacency matrix is partitioned in a 1-D block 
fashion.  (Each  processor  has  n  ×  n/P  of  the 
adjacency matrix and n/p of the Key Array). Each 
processor finds the locally nearest node, a global 
min reduction is  done and main thread  adds  the 
nearest node to the tree and the row entry of this 
node  in  adjacency  matrix  is  broadcast  to  all 
processors.

Gonina et. al. [7] follows a very similar algorithm 
but instead of adding one node to the current tree, 
their algorithm  tries  to add more nodes to the tree 
in  every pass  by doing some extra  computation. 
The  algorithm  finds  locally  K  nearest  outside 
nodes and  global Min-Reduction is done to obtain 
globally  closest  K  nodes.  The  algorithm  then 
iterates through the list to find out whether they are 
valid or not.

The main point to note here is that in both parallel 
formulations of Prim’s algorithm they are growing 
a single tree. Bader et. al. [5] came up with a non-
deterministic shared memory algorithm which uses 
a hybrid approach of Borůvka and Prim algorithm. 
Each processor chooses a root node and grows tree 
in  similar  fashion  of  serial  Prim  approach  and 
when  the  tree  finds  a  nearest  node  that  doesn’t 
belong  to  any  other  tree  it  can  add  the  node, 
whereas if the node belongs to another tree then it 
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must stop growing and start with a new root. In the 
end, we get different connected components(which 
are trees) and some isolated vertices. No two trees 
share a vertex because merging was avoided. Now 
Find-Min  step  of  Borůvka  Algorithm is  used  to 
shrink each of the components into a super node.

Our  new  parallel  algorithm  also  grows  multiple 
trees  in  parallel  and  when  a  collision  occurs 
between two threads  and j (i < j), thread j merges 
with  i.  Thread  i  continues to grow the tree from 
there and thread j picks another node randomly and 
grows a new tree. 

The rest  of the paper is organized as follows. In 
Section 3, we describe the new parallel algorithm 
and  prove  its  correctness.  We  also  describe  the 
load balancing schemes we developed. In Section 
4,  we describe  two new heuristics  to  reduce  the 
number of collisions. In Section 5, we present our 
results.

3 PARALLEL ALGORITHM

Algorithm 3.1 Main Thread

Input: A connected graph G = (V,E) represented 
by adjacency matrix.  |V| = number of vertices; 
|E| = number of edges. Vertices have unique ids.
Output: Minimum Spanning Tree for Graph G

begin
1. For each vertex, set the colour attribute to 

-1.
2. Create  threads with unique thread-ids.
3. For  each thread i and node v, set status[i]

[v] = WHITE and KeyArray[i][v] = ∞
4. Child threads will run MST Algo in 

parallel. 
       4.    Wait for termination of all threads.
       5.    Combine result of all threads.
end  

Algorithm 3.2
MST Algorithm executed by Child Thread with 
threadId i (Tree (i))

begin
while(1)
1.      Choose root node non-deterministically
         If all nodes are visited return
        flag= true;
       while(flag==true)
2.     find the nearest node 'minnode' with 
                  status[i][minnode]=GRAY

if no node can be found  return 
lock minnode

3. 1        if color[minnode] = -1 then
       block all signals      
       color[minnode] = i
       status[i][minnode] = BLACK
       unlock minnode
       append minnode to treelist of 'i'

3.1.1             for all neighbours 'v' of minnode 
                          if status[i][v] = WHITE
    status[i][v] = GRAY 

   append v to treelist of 'i'
               else if status[i][v] = GRAY

            KeyArray[i][v] = min(value[i][v], 
AdjMat[minnode][v] ); 

       end for
       unblock all signals

3.2         else if color[minnode] != i then
     j = color[minnode];

3.2.1      if i < j then
send signal -1 to j
wait till thread 'j' accepts signal  

                            and executes signal handler 
                            ( Mergetree(i,j) )

unlock minnode and kill j
3.2.2      else if i > j then

send signal -2 to j
wait till thread 'j' accepts signal 

                            and executes signal handler 
                            ( Mergetree(j,i) )

unlock minnode and kill j
3.2.3      else 

unlock minnode
continue;

3.3         else if color[minnode] == i then
continue;

       end while
end while
end
Initially,  color[]  of  all  nodes  are set  to  -1.  Each 
thread begins with unique thread-id  i  which is set 
as its color. Now each thread grows a tree from a 
randomly  chosen  root  node  and  starts  coloring 
each node with its color. Initially status[i][v] is set 
to WHITE for each node v and  KeyArray[i][v] is 
the minimum distance from a node v to the tree i. 
In step 3.1.1, the status of nodes that are adjacent 
to current node are marked as GRAY. Among the 
nodes that have status[i] as GRAY, the node which 
has  minimum  KeyArray[i][]  value  is  chosen  as 
'minnode'  and  it  is  added  to  tree  and  status[i]
[minnode] is set as BLACK.

When a collision occurs, to resolve the collision, 
one of the trees should be merged with (or colored 
with)  by  the  other  tree.  To  resolve  this,  let  us 
assume that the tree grown by the thread i collides 
with thread j (i < j). We force the nodes in tree-j to 
be colored by i and thus tree-j is merged with tree-
i. This step is called MergeTree(i,j) and it is done 
in the critical section to avoid race conditions.



Merging of one tree with another in this way is a 
novel  idea  and  it  is  initiated  by sending  signals 
between threads. The two types of signals are
Signal -1
It is sent by thread with smaller-id(i) to thread with 
larger-id(j) asking it to surrender  tree-j. After the 
surrender, thread j is killed.
Signal -2
It is sent by thread with larger-id(j) to thread with 
smaller-id(i) to merge  tree-j with tree-i. Thread j is 
killed after i has merged the nodes.

Before merge After merge
          Figure 1.  Merge Tree (1,3) Operation 

Figure  1  shows  the  case  where  trees  1..3  have 
started growing in parallel and let us assume that 
thread 1 finds a node that is coloured by thread 3 
as its minnode. Thread 1 sends signal-1 to thread 3 
to  initiate  MergeTree(1,3).  The  right  side  of  the 
figure  shows  the  colours  after  the  operation. 
MergeTree( ) could have been initiated by thread 
3, if it had found the collision first. In that case, 
signal-2 is sent by thread 3 to thread 1. The nodes 
that belong to tree-3 are colored by thread 1 and 
are made as a part of tree-1, without any change in 
the results. In the next iteration, tree-1 will merge 
with tree-2. MergeTree() is done in critical section 
to avoid formation of cycles and race conditions. 

If  threads  i  and  j  both  identify  a  collision 
simultaneously, and if  j  enters the critical section, 
thread  i  will  notice later  that  the node on which 
collision occured is already coloured with its color. 
Step 3.3 takes care of this by not changing nodes 
that got colored in the recent MergeTree operation.

We show the correctness of the algorithm below.
Lemma  1.1 No  cycles  are  formed  during 
MergeTree operation.

Figure 2: Illustration to Prove Lemma 1.1

Proof :
The smallest cylce that can be formed is of length 
3. In Figure 2, let us assume to the contrary that a 
cycle is created during MergeTree(). Then,
  w3 < w2  (as tree-3 selects lightest edge leaving it)
  w1 < w3  (as tree-2 selects lightest edge leaving it)
  w2 < w1  (as tree-1 selects lightest edge leaving it) 
 => w3<w2<w1<w3          clearly a contradiction
So such a case is not possible. But, if w1=w2=w3 

then  we  get  merge  requests  MergeTree(1,2), 
MergeTree(2,3),  and  MergeTree(1,3).  As  we  do 
MergeTree in the critical section, only 2 out of 3 
requests  are  executed  and  the last  request  is  not 
granted in step 3.3 in Algorithm 3.2. The proof can 
be extended to cycles of any length greater than 3. 
Hence no cycles are formed.

Lemma 1.2 The edges added by the Algorithm 3.1 
belongs to MST.
Proof:
 Parallel Prim algorithm always converges. In the 
end, the tree (corresponding to the smallest thread-
Id) keeps growing till all the nodes are part of its 
tree. Tree  obtained has all n nodes and (n-1) edges 
and no cycles.
Consider threads growing tree i and tree j with t1-1 
nodes  and  t2-1  nodes  respectively.  When  they 
merge  there  will  be  only  one  additional  edge 
joining  the  two  trees.  So  the  resulting  tree  will 
contain  t1+t2 nodes  and  t1+t2-1  edges.  Hence  the 
graph is connected and it is  a tree. 

If E(t1,t2) is the lowest cost edge joining a node in 
t1 with a node in t2, then
     MST(t1) + MST(t2)+ E(t1,t2) = MST( t1 ∪ t2 )
if and only if E(t1,t2) has its weight larger than all 
the edges in MST(t1) or MST(t2). In our algorithm, 
the edges that are added during MergeTree always 
satisfy this property.  To prove that, consider that 
an  edge  e  exists  whose  weight  is  less  than  the 
weight of some edge in either of the trees. Then, e 
would have been added already to that tree in Step 
2 of the algorithm 3.2. Hence no such edge exists 
and thereby E(t1,t2) is the next lowest cost edge.
Hence all edges chosen by the algorithm belongs 
to MST.

3.1 Load Balancing Scheme
As the  algorithm randomly picks  root  nodes  for 
new trees, there is no guarantee in the algorithm 
that each thread will do significant amount of work 
before terminating. So we need to balance the load 
among threads to ensure that  each thread does a 
fair amount of work.
Termination of Threads:
One simple load-balancing scheme is that instead 
of terminating the thread j in step 3.2 of Algorithm 
3.2, we can let  j choose a new random root node 
and then grow a new tree from this root node.



Base Problem Size

Parallelization can be prohibitive for problem sizes 
that  are small.  As our algorithm proceeds,  fewer 
and fewer nodes remain uncolored and thereby the 
trees  that  are  grown  are  quite  small  before  they 
merge into some other tree. When the number of 
uncolored  nodes  are  below  a  certain  threshold, 
serial  version  of  Prim's  algorithm may consume 
lesser time than any parallel version. We call this 
threshold the Base Problem Size.When we restart 
thread j after a MergeTree(i,j) operation, we check 
if the number of uncolored nodes is less than the 
Base  Problem Size.  If  it  is  so,  we terminate  the 
thread  j.  If not, it is allowed to proceed to pick a 
new random root to start its next round of work. 
We modify the outermost while loop to check for 
the number of uncolored nodes before starting to 
grow  a  new  tree.  Any  thread  k which  is  not 
currently merging with any other thread is allowed 
to  continue  even  when  the  uncolored  nodes  go 
below the Base Problem Size.

In practice, this must be set based on the hardware 
platform  the  algorithms  run  on.  We  have 
empirically set the value of Base Problem Size to 
be |V| / p if there are p threads created.

4. PROPOSED HEURISTICS
Each  mergeTree()  call  requires  a  signal  to  be 
delivered.  The  number  of  signals  generated  is  a 
good  indication  of  communication  cost  of  the 
algorithm.  More  number  of  collisions  result  in 
more  communication  cost.  As  the  algorithm has 
randomization,   it  is  not   easy to  determine  the 
number of collisions. One can reduce the number 
of collisions by dynamically terminating some of 
the threads (not the smallest thread-id thread). We 
have designed two new heuristics to get a bound 
on number of collisions.

Heuristic-1:Wrap-around find-min 

When we find the next lightest edge in  thread  i, 
we have to search through the list of nodes to find 
out which edge is appropriate for addition in the 
next  iteration. In  our  implementation, we always 
started the search from the lowest node index. This 
resulted in some systematic collisions.

Fig 3. Problems With Systematic KeyArray Search

Consider  Figure  3  where  there  are  3  threads  in 
operation.  In  KeyArray of  thread  1 we find that 
there are many candidate nodes for nearest outside 
node who has the same least key (distance from the 
growing tree). Any one of them can be added to 
the tree-1 in current pass. Nodes 1, 2, 3, 4, 5 are at 
distance 1 from tree-1 and they are outside nodes 
for  tree-1.  Similarly nodes 0,  2,  4 are at  outside 
nodes  at  distance  1  from  tree-2.  If  we  always 
systematically  started  the  minimum  search  from 
node 1, then both threads will  likely collide very 
soon.  We  can  avoid  this  by  choosing  other 
candidate  nodes  having  least  key.  In  Figure  3, 
instead of choosing node 0 for tree-2 if we choose 
node  4 then  tree-2 will  not  merge  into tree-1 in 
current pass. The algorithm is still correct as node 
0 and node 4 are nearest outside nodes for tree-2, 
so we can choose node 4 for tree-2.  Our idea is 
that,  instead  of  searching  from the  beginning  of 
KeyArray, we start from the node that we added in 
the last iteration  and wrap around to beginning of 
array when it reaches the end. Thus in figure 3, for 
thread 2 we start from node 3 instead of node 1 and 
finally wrap around when it reaches 6.

Heuristic-2: Threshold Nodes

Figure 4. A Graph With Underperforming Thread

It is also possible that a thread picks up root nodes 
in such a way that the collisions happen very soon 
and the tree that it grows is small. Such a case will 
happen for the orange colored thread in Figure 4. 
No matter what it tries, it will grow only trees of 
size one node before they merge with the green 
thread. If a thread repeatedly grows small trees, 
there is no incentive for us to let the thread 
continue. It is better to kill the thread and thereby 
avoid the communication overheads

 To achieve this, we check in thread i if it added at 
least  NTH  nodes before it merged. If not, we count 
the number of times such a scenario arises. Once 
the thread i has consistently underperformed in 
more than k iterations, we force the thread to be 
killed.  We perform this even if the criteria of Base 
Problem Size allows growing the tree. We used 
k=3 in our experiments. 



The number of collisions in our implementation is 
then bounded as shown below :

5. EXPERIMENTS AND RESULTS
We implemented our parallel Prim algorithm using 
POSIX threads  and  C++.  The  implementation  is 
tested   on multi-core  IBM p690 SMPS machine 
with PowerPC_POWER4 with 32 cores running at 
1.7 GHz running AIX 5 OS (xlC  compiler). The 
implementation  of  Parallel  Prim  was  done  with 
arrays for dense graphs and with Fibonacci heaps 
[1]  for  sparse  graphs.  We  tested  our  code  for 
various types of graphs.
1.  Dense  graphs  -  1000,  3000,  5000  nodes 
complete graphs
2.  Sparse  Graphs  –  2d  or  3d  grids,  random 
connected sparse graphs 

Figure  5  Experimental  results  for  a  complete  
graph with 5000 nodes

Figure  5  shows  a  representative  plot  of  the 
perofrmance of our algorithm as we increase the 
number of thereads.  Execution times for a dense 
graph with 5000 nodes is shown. Different curves 
show  the  execution  times  for  different  Base 
Problem Sizes. We changed the Base Problem Size 
from 100 to 900 nodes and varied the thread count 
from  1  to  6.  We  noticed  that  we  get  the  best 
performance  when  the  thread  count  is  4.  For  a 
graph  with  N  nodes  and  running  p threads,  we 
found in our experiments that the best performance 
is achieved when Base Problem Size is set to N/p. 

We noticed that as we increase the thread count, 
MergeTree  operation  starts  becoming  expensive 
and  thereby  the  communication  cost  and 
sycnhronization becomes more expensive. 
The  speedup  achieved  for  the  dense  graph  with 
5000 nodes is 2.64 for 4 threads with the base size 
of 500 or wutg the base size of 800 for 6 threads 
For Sparse graphs the speedup achieved is 1.3 to 
1.8 for 4 to 6 threads. We notice similar trends for 
larger graphs and larger thread counts. 

6 CONCLUSION AND FUTURE WORK
We presented a new parallel  Prim algorithm that 
grows multiple trees in parallel. We made simple 
observations based on the cut property of the graph 
to grow MSTs in parallel. We noticed some of the 
bottlenecks  in  the  implementation  and  proposed 
heuristics  to  make  the  algorithm  scalable.  We 
presented  some  implementation  issues  of  the 
algorithm.  In  particular,  we  presented  some 
effective load balancing schemes. 
Our algorithm achieves reasonable speedup when 
it is compared with Serial Prim algorithm for dense 
graphs and sparse graphs. It will be interesting to 
address  some  of  the  scalability  issues  in  our 
algorithm and see how to effectively use the  32 
processors.  We  are  currently  working  on  a  few 
ideas to merge trees based on their sizes instead of 
their ids. We are also looking at techniques to both 
speed  up  the  MergeTreeOperation  and  to  reduce 
the collisions.
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 (p - 1) ≤ numofCollisions ≤ ( C1 + C2 )

where 

           No.of Threads = p

           C1 = k( p -1 )

           C2 = ( |V'| - 1 – k( p - 1 ) ) / ( NTH + 1 )


