
A New Parallel Algorithm for Minimum
Spanning Tree Problem

 Rohit Setia Arun Nedunchezhian Shankar Balachandran*

 Google, India Department of CSE Department of CSE
 setiasgnr@gmail.com College of Engg., Anna University Indian Institute of Technology Madras

 arunn3.14@gmail.com shankar@cse.iitm.ac.in
ABSTRACT
Minimum Spanning Tree (MST) is one of the well
known classical graph problems. It has many
applications in VLSI layout and routing, wireless
communication and various other fields. In this
paper, we present a new parallel Prim algorithm
targeting SMP with shared address space. We use
the cut property of graphs to grow trees
simultaneously in multiple threads and a merging
mechanism when threads collide. We also present
two new heuristics and a simple load balancing
scheme to improve the performance of the
algorithm.

1. INTRODUCTION
Minimum Spanning Tree(MST) problem is defined
as follows: Given an undirected connected graph
with weighted edges, find a spanning tree of
minimum total weight.

A fundamental property that we use in our
algorithm is the Cut property of MST. For any
cut C in the graph, the edge with the smallest
weight in the cut belongs to all MSTs of the graph.
Such a minimum weight cut edge for a cut is called
a light edge. If there are multiple edges with the
same smallest cost, at least one of them will be in
the MST.

MST problem has applications in network
organization, touring problems, VLSI routing
problem, partitioning data points into clusters and
various other fields. There exist many serial and
parallel algorithms for the MST problem. The first
serial algorithm for finding MST was given by
Borůvka [2]. Other two commonly used algorithms
are Kruskal's algorithm and Prim’s algorithm [1].
Most of the existing Parallel algorithms are based
on Borůvka's algorithm. Examples are Chung et.
al. [3] and Chong et. al. [4]. Recently a hybrid
approach (of Prim and Borůvka) was used by
Bader et. al. [5]. There are several parallel
formulations of Prim’s algorithm [5, 6].

In this paper we design and implement a new
Parallel Prim algorithm for the MST problem
targeting SMP with shared memory. We use
multiple threads to run algorithm in parallel. The
algorithm non-deterministically chooses a node

and sets it as root. Each thread starts growing a tree
in parallel by colouring the nodes with a unique
colour (called its id). When a collision occurs(a
thread likes to add a node that belongs to another
tree), one of the thread sends a signal to other and
we merge these trees using a MergeTree operation.
We force the tree grown by the thread with larger-
id to merge with tree grown by a thread with
smaller-id. Eventually, thread 0 will have the
MST. The threads are assumed to have the
capability to send asynchronous signals to each
other.

2. RELATED WORK
There are several parallel implementations of
Prim’s algorithm. Kumar et. al. [6] pointed out that
the main outer while loop of serial Prim is very
difficult to run in parallel. But one can find nearest
outside node in parallel by Min-Reduction and
also the update-keys step can be done in parallel.
The adjacency matrix is partitioned in a 1-D block
fashion. (Each processor has n × n/P of the
adjacency matrix and n/p of the Key Array). Each
processor finds the locally nearest node, a global
min reduction is done and main thread adds the
nearest node to the tree and the row entry of this
node in adjacency matrix is broadcast to all
processors.

Gonina et. al. [7] follows a very similar algorithm
but instead of adding one node to the current tree,
their algorithm tries to add more nodes to the tree
in every pass by doing some extra computation.
The algorithm finds locally K nearest outside
nodes and global Min-Reduction is done to obtain
globally closest K nodes. The algorithm then
iterates through the list to find out whether they are
valid or not.

The main point to note here is that in both parallel
formulations of Prim’s algorithm they are growing
a single tree. Bader et. al. [5] came up with a non-
deterministic shared memory algorithm which uses
a hybrid approach of Borůvka and Prim algorithm.
Each processor chooses a root node and grows tree
in similar fashion of serial Prim approach and
when the tree finds a nearest node that doesn’t
belong to any other tree it can add the node,
whereas if the node belongs to another tree then it

*Corresponding author. The work was started when Rohit Setia was a student at IIT Madras. Arun Nedunchezhian is currently a senior
student in the Dept. of CSE, College of Engineering, Guindy, Anna University.

must stop growing and start with a new root. In the
end, we get different connected components(which
are trees) and some isolated vertices. No two trees
share a vertex because merging was avoided. Now
Find-Min step of Borůvka Algorithm is used to
shrink each of the components into a super node.

Our new parallel algorithm also grows multiple
trees in parallel and when a collision occurs
between two threads and j (i < j), thread j merges
with i. Thread i continues to grow the tree from
there and thread j picks another node randomly and
grows a new tree.

The rest of the paper is organized as follows. In
Section 3, we describe the new parallel algorithm
and prove its correctness. We also describe the
load balancing schemes we developed. In Section
4, we describe two new heuristics to reduce the
number of collisions. In Section 5, we present our
results.

3 PARALLEL ALGORITHM

Algorithm 3.1 Main Thread

Input: A connected graph G = (V,E) represented
by adjacency matrix. |V| = number of vertices;
|E| = number of edges. Vertices have unique ids.
Output: Minimum Spanning Tree for Graph G

begin
1. For each vertex, set the colour attribute to

-1.
2. Create threads with unique thread-ids.
3. For each thread i and node v, set status[i]

[v] = WHITE and KeyArray[i][v] = ∞
4. Child threads will run MST Algo in

parallel.
 4. Wait for termination of all threads.
 5. Combine result of all threads.
end

Algorithm 3.2
MST Algorithm executed by Child Thread with
threadId i (Tree (i))

begin
while(1)
1. Choose root node non-deterministically
 If all nodes are visited return
 flag= true;
 while(flag==true)
2. find the nearest node 'minnode' with
 status[i][minnode]=GRAY

if no node can be found return
lock minnode

3. 1 if color[minnode] = -1 then
 block all signals
 color[minnode] = i
 status[i][minnode] = BLACK
 unlock minnode
 append minnode to treelist of 'i'

3.1.1 for all neighbours 'v' of minnode
 if status[i][v] = WHITE
 status[i][v] = GRAY

 append v to treelist of 'i'
 else if status[i][v] = GRAY

 KeyArray[i][v] = min(value[i][v],
AdjMat[minnode][v]);

 end for
 unblock all signals

3.2 else if color[minnode] != i then
 j = color[minnode];

3.2.1 if i < j then
send signal -1 to j
wait till thread 'j' accepts signal

 and executes signal handler
 (Mergetree(i,j))

unlock minnode and kill j
3.2.2 else if i > j then

send signal -2 to j
wait till thread 'j' accepts signal

 and executes signal handler
 (Mergetree(j,i))

unlock minnode and kill j
3.2.3 else

unlock minnode
continue;

3.3 else if color[minnode] == i then
continue;

 end while
end while
end
Initially, color[] of all nodes are set to -1. Each
thread begins with unique thread-id i which is set
as its color. Now each thread grows a tree from a
randomly chosen root node and starts coloring
each node with its color. Initially status[i][v] is set
to WHITE for each node v and KeyArray[i][v] is
the minimum distance from a node v to the tree i.
In step 3.1.1, the status of nodes that are adjacent
to current node are marked as GRAY. Among the
nodes that have status[i] as GRAY, the node which
has minimum KeyArray[i][] value is chosen as
'minnode' and it is added to tree and status[i]
[minnode] is set as BLACK.

When a collision occurs, to resolve the collision,
one of the trees should be merged with (or colored
with) by the other tree. To resolve this, let us
assume that the tree grown by the thread i collides
with thread j (i < j). We force the nodes in tree-j to
be colored by i and thus tree-j is merged with tree-
i. This step is called MergeTree(i,j) and it is done
in the critical section to avoid race conditions.

Merging of one tree with another in this way is a
novel idea and it is initiated by sending signals
between threads. The two types of signals are
Signal -1
It is sent by thread with smaller-id(i) to thread with
larger-id(j) asking it to surrender tree-j. After the
surrender, thread j is killed.
Signal -2
It is sent by thread with larger-id(j) to thread with
smaller-id(i) to merge tree-j with tree-i. Thread j is
killed after i has merged the nodes.

Before merge After merge
 Figure 1. Merge Tree (1,3) Operation

Figure 1 shows the case where trees 1..3 have
started growing in parallel and let us assume that
thread 1 finds a node that is coloured by thread 3
as its minnode. Thread 1 sends signal-1 to thread 3
to initiate MergeTree(1,3). The right side of the
figure shows the colours after the operation.
MergeTree() could have been initiated by thread
3, if it had found the collision first. In that case,
signal-2 is sent by thread 3 to thread 1. The nodes
that belong to tree-3 are colored by thread 1 and
are made as a part of tree-1, without any change in
the results. In the next iteration, tree-1 will merge
with tree-2. MergeTree() is done in critical section
to avoid formation of cycles and race conditions.

If threads i and j both identify a collision
simultaneously, and if j enters the critical section,
thread i will notice later that the node on which
collision occured is already coloured with its color.
Step 3.3 takes care of this by not changing nodes
that got colored in the recent MergeTree operation.

We show the correctness of the algorithm below.
Lemma 1.1 No cycles are formed during
MergeTree operation.

Figure 2: Illustration to Prove Lemma 1.1

Proof :
The smallest cylce that can be formed is of length
3. In Figure 2, let us assume to the contrary that a
cycle is created during MergeTree(). Then,
 w3 < w2 (as tree-3 selects lightest edge leaving it)
 w1 < w3 (as tree-2 selects lightest edge leaving it)
 w2 < w1 (as tree-1 selects lightest edge leaving it)
 => w3<w2<w1<w3 clearly a contradiction
So such a case is not possible. But, if w1=w2=w3

then we get merge requests MergeTree(1,2),
MergeTree(2,3), and MergeTree(1,3). As we do
MergeTree in the critical section, only 2 out of 3
requests are executed and the last request is not
granted in step 3.3 in Algorithm 3.2. The proof can
be extended to cycles of any length greater than 3.
Hence no cycles are formed.

Lemma 1.2 The edges added by the Algorithm 3.1
belongs to MST.
Proof:
 Parallel Prim algorithm always converges. In the
end, the tree (corresponding to the smallest thread-
Id) keeps growing till all the nodes are part of its
tree. Tree obtained has all n nodes and (n-1) edges
and no cycles.
Consider threads growing tree i and tree j with t1-1
nodes and t2-1 nodes respectively. When they
merge there will be only one additional edge
joining the two trees. So the resulting tree will
contain t1+t2 nodes and t1+t2-1 edges. Hence the
graph is connected and it is a tree.

If E(t1,t2) is the lowest cost edge joining a node in
t1 with a node in t2, then
 MST(t1) + MST(t2)+ E(t1,t2) = MST(t1 ∪ t2)
if and only if E(t1,t2) has its weight larger than all
the edges in MST(t1) or MST(t2). In our algorithm,
the edges that are added during MergeTree always
satisfy this property. To prove that, consider that
an edge e exists whose weight is less than the
weight of some edge in either of the trees. Then, e
would have been added already to that tree in Step
2 of the algorithm 3.2. Hence no such edge exists
and thereby E(t1,t2) is the next lowest cost edge.
Hence all edges chosen by the algorithm belongs
to MST.

3.1 Load Balancing Scheme
As the algorithm randomly picks root nodes for
new trees, there is no guarantee in the algorithm
that each thread will do significant amount of work
before terminating. So we need to balance the load
among threads to ensure that each thread does a
fair amount of work.
Termination of Threads:
One simple load-balancing scheme is that instead
of terminating the thread j in step 3.2 of Algorithm
3.2, we can let j choose a new random root node
and then grow a new tree from this root node.

Base Problem Size

Parallelization can be prohibitive for problem sizes
that are small. As our algorithm proceeds, fewer
and fewer nodes remain uncolored and thereby the
trees that are grown are quite small before they
merge into some other tree. When the number of
uncolored nodes are below a certain threshold,
serial version of Prim's algorithm may consume
lesser time than any parallel version. We call this
threshold the Base Problem Size.When we restart
thread j after a MergeTree(i,j) operation, we check
if the number of uncolored nodes is less than the
Base Problem Size. If it is so, we terminate the
thread j. If not, it is allowed to proceed to pick a
new random root to start its next round of work.
We modify the outermost while loop to check for
the number of uncolored nodes before starting to
grow a new tree. Any thread k which is not
currently merging with any other thread is allowed
to continue even when the uncolored nodes go
below the Base Problem Size.

In practice, this must be set based on the hardware
platform the algorithms run on. We have
empirically set the value of Base Problem Size to
be |V| / p if there are p threads created.

4. PROPOSED HEURISTICS
Each mergeTree() call requires a signal to be
delivered. The number of signals generated is a
good indication of communication cost of the
algorithm. More number of collisions result in
more communication cost. As the algorithm has
randomization, it is not easy to determine the
number of collisions. One can reduce the number
of collisions by dynamically terminating some of
the threads (not the smallest thread-id thread). We
have designed two new heuristics to get a bound
on number of collisions.

Heuristic-1:Wrap-around find-min

When we find the next lightest edge in thread i,
we have to search through the list of nodes to find
out which edge is appropriate for addition in the
next iteration. In our implementation, we always
started the search from the lowest node index. This
resulted in some systematic collisions.

Fig 3. Problems With Systematic KeyArray Search

Consider Figure 3 where there are 3 threads in
operation. In KeyArray of thread 1 we find that
there are many candidate nodes for nearest outside
node who has the same least key (distance from the
growing tree). Any one of them can be added to
the tree-1 in current pass. Nodes 1, 2, 3, 4, 5 are at
distance 1 from tree-1 and they are outside nodes
for tree-1. Similarly nodes 0, 2, 4 are at outside
nodes at distance 1 from tree-2. If we always
systematically started the minimum search from
node 1, then both threads will likely collide very
soon. We can avoid this by choosing other
candidate nodes having least key. In Figure 3,
instead of choosing node 0 for tree-2 if we choose
node 4 then tree-2 will not merge into tree-1 in
current pass. The algorithm is still correct as node
0 and node 4 are nearest outside nodes for tree-2,
so we can choose node 4 for tree-2. Our idea is
that, instead of searching from the beginning of
KeyArray, we start from the node that we added in
the last iteration and wrap around to beginning of
array when it reaches the end. Thus in figure 3, for
thread 2 we start from node 3 instead of node 1 and
finally wrap around when it reaches 6.

Heuristic-2: Threshold Nodes

Figure 4. A Graph With Underperforming Thread

It is also possible that a thread picks up root nodes
in such a way that the collisions happen very soon
and the tree that it grows is small. Such a case will
happen for the orange colored thread in Figure 4.
No matter what it tries, it will grow only trees of
size one node before they merge with the green
thread. If a thread repeatedly grows small trees,
there is no incentive for us to let the thread
continue. It is better to kill the thread and thereby
avoid the communication overheads

 To achieve this, we check in thread i if it added at
least NTH nodes before it merged. If not, we count
the number of times such a scenario arises. Once
the thread i has consistently underperformed in
more than k iterations, we force the thread to be
killed. We perform this even if the criteria of Base
Problem Size allows growing the tree. We used
k=3 in our experiments.

The number of collisions in our implementation is
then bounded as shown below :

5. EXPERIMENTS AND RESULTS
We implemented our parallel Prim algorithm using
POSIX threads and C++. The implementation is
tested on multi-core IBM p690 SMPS machine
with PowerPC_POWER4 with 32 cores running at
1.7 GHz running AIX 5 OS (xlC compiler). The
implementation of Parallel Prim was done with
arrays for dense graphs and with Fibonacci heaps
[1] for sparse graphs. We tested our code for
various types of graphs.
1. Dense graphs - 1000, 3000, 5000 nodes
complete graphs
2. Sparse Graphs – 2d or 3d grids, random
connected sparse graphs

Figure 5 Experimental results for a complete
graph with 5000 nodes

Figure 5 shows a representative plot of the
perofrmance of our algorithm as we increase the
number of thereads. Execution times for a dense
graph with 5000 nodes is shown. Different curves
show the execution times for different Base
Problem Sizes. We changed the Base Problem Size
from 100 to 900 nodes and varied the thread count
from 1 to 6. We noticed that we get the best
performance when the thread count is 4. For a
graph with N nodes and running p threads, we
found in our experiments that the best performance
is achieved when Base Problem Size is set to N/p.

We noticed that as we increase the thread count,
MergeTree operation starts becoming expensive
and thereby the communication cost and
sycnhronization becomes more expensive.
The speedup achieved for the dense graph with
5000 nodes is 2.64 for 4 threads with the base size
of 500 or wutg the base size of 800 for 6 threads
For Sparse graphs the speedup achieved is 1.3 to
1.8 for 4 to 6 threads. We notice similar trends for
larger graphs and larger thread counts.

6 CONCLUSION AND FUTURE WORK
We presented a new parallel Prim algorithm that
grows multiple trees in parallel. We made simple
observations based on the cut property of the graph
to grow MSTs in parallel. We noticed some of the
bottlenecks in the implementation and proposed
heuristics to make the algorithm scalable. We
presented some implementation issues of the
algorithm. In particular, we presented some
effective load balancing schemes.
Our algorithm achieves reasonable speedup when
it is compared with Serial Prim algorithm for dense
graphs and sparse graphs. It will be interesting to
address some of the scalability issues in our
algorithm and see how to effectively use the 32
processors. We are currently working on a few
ideas to merge trees based on their sizes instead of
their ids. We are also looking at techniques to both
speed up the MergeTreeOperation and to reduce
the collisions.

7 REFERENCES
[1] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. MIT
Press,Cambridge, MA.1990
[2] Otakar Borůvka. O jistém problému
minimálním (About a certain minimal problem).
Práce mor. přírodověd. spol. v Brně III 3: 37–
58.1926
[3] Sun Chung and Anne Condon. Parallel
implementation of Bor°uvka’s minimum spanning
tree algorithm.(IPPS’96)
[4] Ka Wong Chong, Yijie Han, Yoshihide
Igarashi, and Tak Wah Lam. 1999. Improving the
Efficiency of Parallel Minimum Spanning Tree
Algorithms. Discrete Applied Mathematics. 2003
[5] David A. Bader, and Guojing Cong.Fast.
Shared-Memory Algorithms for Computing the
Minimum Spanning Forest of Sparse Graphs.
JPDC, 2006
[6] G. Karypis A. Grama, A. Gupta and V. Kumar.
Introduction to Parallel Computing.Addison
Wesley, second edition, 2003.
[7] Ekaterina Gonina and Laxmikant V. Kalé.
Parallel Prim’s algorithm on dense graphs with a
novel extension. Technical Report. Department of
Computer Science, University of Illinois at
Urbana-Champaign. November 2007.

 (p - 1) ≤ numofCollisions ≤ (C1 + C2)

where

 No.of Threads = p

 C1 = k(p -1)

 C2 = (|V'| - 1 – k(p - 1)) / (NTH + 1)

