Parallel Algorithms and Programming
Week 6

Kishore Kothapalli

October 22, 2008

Chapter 6

Parallel Graph Algorithms

6.1 Introduction

Graphs play an imoprtant role in Computer Science given iiléyato model several problems as graph-
theoretic problems. In the sequential setting also, efficagorithms for graph problems continues to be
an active area of research and pedagogy. In this chaptertuds algorithms for some of the fundamental
graph problems such as finding the connected components igé@a graph, to find an MST of a given
weighted graph, and a shortest paths problem.

Unless otherwise specified, we deal with undirected gragmetedG = (V, E) with |V| = n and
|E| = m. There are two ways to represent graphs: one using:am matrix called the adjacency matrix,
A, and two using adjacency lists where the adjacency list afden consists of all the neighbours ofin a
linked list.

6.2 Connected Components

The connected components problem can be defined as followw&n @n undirected grapy = (V, E)
partition the vertex set into disjoint seltg, Vs, - - - , so that for every pair of vertices, v in V;, there exists
a path fromu to v. Clearly, this partition forms equivalence classes unkeréaltion of having a path.

The algorithm we study resembles the familiar Union-Finthddructure. The idea is as follows. Sup-
pose we have an initial set of trees where vertices in eaehare in the same connected component. Two
treesT; andT, are combined together to form a bigger tree if there existicesv € T7 andw € Ty SO
thatvw € E. This process results in what we call aigper-verties For the next iteration, we can take the
graph to be graph with the vertex set being the super-vertioel the edge set so that there is an edge
whenever there exists a pair of vertices vs andw € w; So thatvw € E. Notice that we are talking of a
sequence of graphs, one for each iteration where the v&xieg,, ; are the super-vertices frots;. Doing
this repeatedly will result in the required partition16f

That completes the intuitive description of the algorithifowever, several implementation details re-
main. How do we arrange these supervertices? How to refrsegraph in the algorithm? How to build
the graph of super-vertices as the algorithm proceedes?rinvy iterations are required?

In the following, let us try to address these questions. tligirfor simplicity let us represent the input
graph as its adjacency matrix. Initially, the adjacencyrinas ann x n matrix. If n, super-vertices remain
after thekth iteration, then the adjacency matrix for the next it@matiA;; is anny x ni matrix. To
populate this matrix, we just have to see if for two vertice$/oand W in G, there exists a pair so that
u e Uandw € W anduw € E. Then,A;+1(V,W) = 1 and 0 otherwise. If we assume any reasonable
concurrent write model, this step is easy to implement.

3

4 CHAPTER 6. PARALLEL GRAPH ALGORITHMS

For the above step, one further detail is required. It shbeléasy to check i andw are in the same
supervertex after the iteration. For this, we require that every nodec V' be given a label so that if two
vertices are in the same super-vertex then they have thelaheie Initially, since each vertex is treated as
a super-vertex, the label is same as the node label itselfa8we combine two trees, the labels have to
updated. So. let us assume that the label of a node will benttexiof the smallest node in the tree. To find
this, one can simply make the node of the smallest label asotiteof the tree and use pointer jumping as
we combine trees so that the label can be set correctly.

Given the above detalils, let us now develop the entire dlgari We have to describe how to start with
an initial set of trees. For this, let us define a funct@n V' — V on the vertex set of the graph as
follows. We letC(v) = min{w|A(v,w) = 1}, i.e., the smallest numbered neighbourvofWe can view
this function also defining a set of directed trees (plus deyan V' with the edge set given by, C(v)).
Some properties of this definition one can show immediately a

e The forest of trees thus created indeed partitignisito setsVy, Vo, - - -, V; so that all the vertices in
each partition are in the same connected component.

e Each cycle in the forest is either a self-loop or of length 2,

The above properties are easy to show by virtue of constructiVe use the”'() function to initially
come up with the required set of trees. The entire algorithmoiv given below.

Algorithm ConnectedComponefis)

LetGo(Vo, Eo) =G

A=A, i=1

for each vertex € V; do in parallel
setC(v) = min{w|A(v,w) = 1}, if no suchw exists, then sef’'(v) = v.

While n;, > 0 do
Shrink the set of directed trees obtained usihtp a star using pointer doubling
Define the set of roots of each star with at least two vertisagb@ set of superverticeg;
Compute the adjacency matr corresponding to vertex s&}
setA = A;andset =7+ 1

end-while

Compute the component number for each vertex by reversagribcess of shrinking.

An example is given below to explain the algorithExample. The graph is shown in Figure 6.1 along
with the set of trees obtained by thefunction. The shrinking of the trees and the resulting staesshown
in Figure 6.2. The adjacency matrix for the next iteratioalgs shown in 6.2.

O

6.3 All Pairs Shortest Paths

We now study some parallel algoritms for shortest pathedlaroblems in directed graphs. First, we study
an algorithm for computing the transitive closure of a dieelcgraph.

6.3.1 Transitive Closure

Supposea represents the adjacency matrix of a directed gi@ph (V, E). The transitive closure problem
asks for a matrix3 such thatB(i, 7) = 1 if and only if eitheri = j or if there exists a directed path froin
tojinG.

6.3. ALL PAIRS SHORTEST PATHS

Legend:

® Colored node

O Uncolored node
Figure 6.1: An example graph and its initial set of trees

1

A

2 3 4 5 6 9 10 13

“0

Figure 6.2: The working of the connected component algarith

6 CHAPTER 6. PARALLEL GRAPH ALGORITHMS

The computation of transitive closure is greatly simplifitdne solves the problem of matrix multi-
plication in parallel efficiently. We know that matrix mydtication can be solved i(logn) time using
O(n?) operations for twa x n operations. However, if the entries of the matrices beingiplied are from
a ring, then matrix multiplication of twa x n matrices can be performed (log n) time but using only
O(n?376) operations. We denote this iy (n). A special case of the matrix multiplication algorithms is
multiplication of two Boolean matrices. In the CRCW modalstcan be done i®(1) time using a total of
O(n?) operations.

To compute the transitive closure, we first observe thateheired matrix isB = (I + A)ZW wherel
is the identity matrix of sizex. The claim can be shown by induction on the shortest pathhengtween
andj. If i« = j then the addition of ensures thaB(i,j) = 1. Fori # j, we claim that7 + A)" will have
a 1 where the shortest path betwéemd; has a length of. This is because of the fact thatiiatnd; have
a path of lengthr, then there exists a vertéxsuch that andk have a path of length — 1 andk to j has a
path of length 1. This ensures thdt+ A)" will have the(i, j)th entry as 1.

So we just have to find out how to compute a matrix power. Thidss easy as we can computé by
repeated squaring. Hence we have:

Lemma 6.3.1 The transitive closure of a directed graphcan be computed i@ (log n) time usingD (n? log n)
operations on the CRCW PRAM ordnlog? n) time usingD (M (n) log n) operations on the CREW PRAM.

6.3.2 All Pairs Shortest Paths

The problem is to compute for every pair of vertieeandv in a given weighted directed graghthe weight
of the shortest directed path fromto v. There is a straight-forward reduction from all-pairs{$bst-paths
to matrix multiplication. Replace the operation bymin and thex operation byt in matrix multiplication.
Under this replacement, comput& where A is the weighted adjacency matrix Gt Thus, we have:

Lemma 6.3.2 APSP inO(log? n) time,O(n®log n) operations.

6.4 Minimum Spanning Tree

A spanning tree of agrapfi = (V, E) is a subgrapti’ = (Vrs, Er) such thal’y = V andEr C E. Inthe
case of a weighted grapghi with a weight functionw : £ — IR™, a minimum spanning tree is a spanning
tree that has the lowest possible weight where the weighttifeais defined as the sum of the weights of
its edges. Spanning trees and minimum spanning trees arigany applications in graph theory. As we
design an algorithm for obtaining an MST of a given weighteditected grapld7, we assume that the edge
weights are all distinct.

The following lemma aids us in the design of an MST in the PRABUe.

Lemma6.4.1 LetG = (V, E) be a weighted undirected graph. L&{(v) for a vertexv € V denote the
neighbor ofv with the least cost edge incident onThen,:

¢ All the edgegv, C'(v)) belong to the MST.

e The functionC : V — V defines a pseudoforest such that any directed cycle has thlefgvo.

Proof. For 1, suppose that for some vertexhe edgdv, C'(v)) is notin the MSTT'. Let the path between
vandC(v) in T bev vy ve--- v, C(v). Adding the edgév, C(v)) to this path yields a cycle. In this cycle,
removing the edgév, v1) creates another spanning trEewhose weight is smaller thah. SoT is not an
MST.

6.4. MINIMUM SPANNING TREE 7

For 2, notice that if the pseudoforest defined@@yhas a cycle of more than 2 edges, then the free
defined by the edges of the forfn, C(v)) also has a cycle. Sincg is a MST and all these edges are part
of the MST, this implies that no cycles of length more than t&a exist. Self-loops are also not possible as
(v,C(v)) € E(G). 0

The above lemma can be generalized for a partition of vertisefollows.

Lemma6.4.2 LetV = U;V; be a partition ofl/. LetG; = (V;, E;) be the subgraph induced By. Lete}
be the edge of minimum weight#(G) N V; x V' \ V;, that connects a vertex ivj to the rest of the graph.
Then all such edges belong to an MST of;.

Using the above ideas, we now present an algorithm given biyn$ar MST in the PRAM model.

6.4.1 Sollin’sAlgorithm

This algorithm is similar to that of the algorithm for contett components we saw earlier. The essential
difference is the definition of the functiadi and its implementation.

Algorithm ConnectedComponefis)
1. LetGo(V, Ey) = G, andWy = W, ng = n, andk = 1.
2. Whilen; > 1do
/* Define C values */
for each vertex € Vj, do in parallel
SetC(v) = v whereWy (v, u) = min{Wy(v,u)}.
Mark (v, C(v)).
Shrink the set of directed trees obtained ugihgp a rooted star using pointer doubling
/* Updatet forthe héxh jiecatiennidmber of rooted stard/;, to be the weights of the graph
of n;, vertices induced by viewing each star as a single vertex.
end-while
3. Output the marked edges. Notice that the marked edgeddaegranslated to their original label.

In the following, we study the runtime of the above algorithnmd some implementation issues. One
of the difficult issues in this algorithm is to construct thatnix W, from the matrixW;_,. The central
operation is to find for two roots,,r, € V;_; the weight of the edges between andrs in W;. The
required weight isnin{Wj,_; (u,v)|C(u) = r1,C(v) = ro}. To compute this, we proceed as follows.

Group the vertices ofv;,_; according to the definition of’ and for each group find the minima with
respect to every vertex in the group. This can be seen agingsul a matrix of sizen;_; x ng. The step
involves sorting according t6@' values and the weights #W;_1. Now, perform a similar kind of grouping
on the rows of thew;_; x ni matrix similarly. It can be then seen that these operati@mshe done in
O(log ny_1) time using a total 0O (ny_1 log n;_1) operations.

Finally, we have that a MST of an undirected graph can be coeapin O(log? n) time usingO(n?)
operations on a CREW PRAM.

