
Parallel Algorithms and Programming
Week 6

Kishore Kothapalli

October 22, 2008

2

Chapter 6

Parallel Graph Algorithms

6.1 Introduction

Graphs play an imoprtant role in Computer Science given the ability to model several problems as graph-
theoretic problems. In the sequential setting also, efficient algorithms for graph problems continues to be
an active area of research and pedagogy. In this chapter, we study algorithms for some of the fundamental
graph problems such as finding the connected components of a given graph, to find an MST of a given
weighted graph, and a shortest paths problem.

Unless otherwise specified, we deal with undirected graphs denotedG = (V,E) with |V | = n and
|E| = m. There are two ways to represent graphs: one using ann × n matrix called the adjacency matrix,
A, and two using adjacency lists where the adjacency list of a nodev consists of all the neighbours ofv in a
linked list.

6.2 Connected Components

The connected components problem can be defined as follows. Given an undirected graphG = (V,E)
partition the vertex set into disjoint setsV1, V2, · · · , so that for every pair of verticesu, v in Vi, there exists
a path fromu to v. Clearly, this partition forms equivalence classes under the realtion of having a path.

The algorithm we study resembles the familiar Union-Find data structure. The idea is as follows. Sup-
pose we have an initial set of trees where vertices in each tree are in the same connected component. Two
treesT1 andT2 are combined together to form a bigger tree if there exists verticesv ∈ T1 andw ∈ T2 so
thatvw ∈ E. This process results in what we call assuper-verties. For the next iteration, we can take the
graph to be graph with the vertex set being the super-vertices and the edge set so that there is an edgevsws

whenever there exists a pair of verticesv ∈ vs andw ∈ ws so thatvw ∈ E. Notice that we are talking of a
sequence of graphs, one for each iteration where the vertices ofGi+1 are the super-vertices fromGi. Doing
this repeatedly will result in the required partition ofV .

That completes the intuitive description of the algorithm.However, several implementation details re-
main. How do we arrange these supervertices? How to represent the graph in the algorithm? How to build
the graph of super-vertices as the algorithm proceedes? Howmany iterations are required?

In the following, let us try to address these questions. Firstly, for simplicity let us represent the input
graph as its adjacency matrix. Initially, the adjacency matrix is ann×n matrix. If nk super-vertices remain
after thekth iteration, then the adjacency matrix for the next iteration, Ak+1 is annk × nk matrix. To
populate this matrix, we just have to see if for two vertices of U andW in Gk, there exists a pair so that
u ∈ U andw ∈ W anduw ∈ E. Then,Ak+1(V,W) = 1 and 0 otherwise. If we assume any reasonable
concurrent write model, this step is easy to implement.

3

4 CHAPTER 6. PARALLEL GRAPH ALGORITHMS

For the above step, one further detail is required. It shouldbe easy to check ifv andw are in the same
supervertex after thek iteration. For this, we require that every nodev ∈ V be given a label so that if two
vertices are in the same super-vertex then they have the samelabel. Initially, since each vertex is treated as
a super-vertex, the label is same as the node label itself. But as we combine two trees, the labels have to
updated. So. let us assume that the label of a node will be the index of the smallest node in the tree. To find
this, one can simply make the node of the smallest label as theroot of the tree and use pointer jumping as
we combine trees so that the label can be set correctly.

Given the above details, let us now develop the entire algorithm. We have to describe how to start with
an initial set of trees. For this, let us define a functionC : V → V on the vertex set of the graphG as
follows. We letC(v) = min{w|A(v,w) = 1}, i.e., the smallest numbered neighbour ofv. We can view
this function also defining a set of directed trees (plus a cycle) onV with the edge set given by(v,C(v)).
Some properties of this definition one can show immediately are:

• The forest of trees thus created indeed partitionsV into setsV1, V2, · · · , Vj so that all the vertices in
each partition are in the same connected component.

• Each cycle in the forest is either a self-loop or of length 2,

The above properties are easy to show by virtue of construction. We use theC() function to initially
come up with the required set of trees. The entire algorithm is now given below.

Algorithm ConnectedComponents(G)
Let G0(V0, E0) = G

A = A0, i = 1
for each vertexv ∈ V0 do in parallel

setC(v) = min{w|A(v,w) = 1}, if no suchw exists, then setC(v) = v.
While nk > 0 do

Shrink the set of directed trees obtained usingC to a star using pointer doubling
Define the set of roots of each star with at least two vertices as the set of supervertices,Vi

Compute the adjacency matrixAi corresponding to vertex setV1

setA = Ai and seti = i + 1
end-while
Compute the component number for each vertex by reversing the process of shrinking.

An example is given below to explain the algorithm.Example. The graph is shown in Figure 6.1 along
with the set of trees obtained by theC function. The shrinking of the trees and the resulting starsare shown
in Figure 6.2. The adjacency matrix for the next iteration isalso shown in 6.2.

⊓⊔

6.3 All Pairs Shortest Paths

We now study some parallel algoritms for shortest path related problems in directed graphs. First, we study
an algorithm for computing the transitive closure of a directed graph.

6.3.1 Transitive Closure

SupposeA represents the adjacency matrix of a directed graphG = (V,E). The transitive closure problem
asks for a matrixB such thatB(i, j) = 1 if and only if eitheri = j or if there exists a directed path fromi
to j in G.

6.3. ALL PAIRS SHORTEST PATHS 5

Colored node

Uncolored node

Legend:

0

4

0

1
2

5

5
3

4

1

Figure 6.1: An example graph and its initial set of trees

11

1

2

3

A 1

1

2 3 4 5 96 10 13

7

8 12

1 2 3

1

3 0 0 0

2 1 0 0

010

Figure 6.2: The working of the connected component algorithm.

6 CHAPTER 6. PARALLEL GRAPH ALGORITHMS

The computation of transitive closure is greatly simplifiedif one solves the problem of matrix multi-
plication in parallel efficiently. We know that matrix multiplication can be solved inO(log n) time using
O(n3) operations for twon×n operations. However, if the entries of the matrices being multiplied are from
a ring, then matrix multiplication of twon × n matrices can be performed inO(log n) time but using only
O(n2.376) operations. We denote this byM(n). A special case of the matrix multiplication algorithms is
multiplication of two Boolean matrices. In the CRCW model, this can be done inO(1) time using a total of
O(n3) operations.

To compute the transitive closure, we first observe that the required matrix isB = (I + A)2
⌈n⌉

whereI

is the identity matrix of sizen. The claim can be shown by induction on the shortest path length betweeni
andj. If i = j then the addition ofI ensures thatB(i, j) = 1. For i 6= j, we claim that(I + A)r will have
a 1 where the shortest path betweeni andj has a length ofr. This is because of the fact that ifi andj have
a path of lengthr, then there exists a vertexk such thati andk have a path of lengthr − 1 andk to j has a
path of length 1. This ensures that(I + A)r will have the(i, j)th entry as 1.

So we just have to find out how to compute a matrix power. This isalso easy as we can computeAk by
repeated squaring. Hence we have:

Lemma 6.3.1 The transitive closure of a directed graphG can be computed inO(log n) time usingO(n3 log n)
operations on the CRCW PRAM or inO(log2 n) time usingO(M(n) log n) operations on the CREW PRAM.

6.3.2 All Pairs Shortest Paths

The problem is to compute for every pair of verticesu andv in a given weighted directed graphG the weight
of the shortest directed path fromu to v. There is a straight-forward reduction from all-pairs-shortest-paths
to matrix multiplication. Replace the+ operation bymin and the× operation by+ in matrix multiplication.
Under this replacement, computeAn whereA is the weighted adjacency matrix ofG. Thus, we have:

Lemma 6.3.2 APSP inO(log2 n) time,O(n3 log n) operations.

6.4 Minimum Spanning Tree

A spanning tree of a graphG = (V,E) is a subgraphT = (VT s,ET) such thatVT = V andET ⊆ E. In the
case of a weighted graphG with a weight functionw : E → IR

+, a minimum spanning tree is a spanning
tree that has the lowest possible weight where the weight of atree is defined as the sum of the weights of
its edges. Spanning trees and minimum spanning trees arise in many applications in graph theory. As we
design an algorithm for obtaining an MST of a given weighted undirected graphG, we assume that the edge
weights are all distinct.

The following lemma aids us in the design of an MST in the PRAM model.

Lemma 6.4.1 Let G = (V,E) be a weighted undirected graph. LetC(v) for a vertexv ∈ V denote the
neighbor ofv with the least cost edge incident onv. Then,:

• All the edges(v,C(v)) belong to the MST.

• The functionC : V → V defines a pseudoforest such that any directed cycle has a length of two.

Proof. For 1, suppose that for some vertexv, the edge(v,C(v)) is not in the MST,T . Let the path between
v andC(v) in T bev v1 v2 · · · vk C(v). Adding the edge(v,C(v)) to this path yields a cycle. In this cycle,
removing the edge(v, v1) creates another spanning treeT ′ whose weight is smaller thanT . SoT is not an
MST.

6.4. MINIMUM SPANNING TREE 7

For 2, notice that if the pseudoforest defined byC has a cycle of more than 2 edges, then the treeT

defined by the edges of the form(v,C(v)) also has a cycle. SinceT is a MST and all these edges are part
of the MST, this implies that no cycles of length more than twocan exist. Self-loops are also not possible as
(v,C(v)) ∈ E(G). ⊓⊔

The above lemma can be generalized for a partition of vertices as follows.

Lemma 6.4.2 LetV = ∪iVi be a partition ofV . LetGi = (Vi, Ei) be the subgraph induced byVi. Lete∗i
be the edge of minimum weight inE(G) ∩ Vi × V \ Vi, that connects a vertex inVi to the rest of the graph.
Then all such edgesei belong to an MST ofG.

Using the above ideas, we now present an algorithm given by Sollin for MST in the PRAM model.

6.4.1 Sollin’s Algorithm

This algorithm is similar to that of the algorithm for connected components we saw earlier. The essential
difference is the definition of the functionC and its implementation.

Algorithm ConnectedComponents(G)
1. LetG0(V0, E0) = G, andW0 = W , n0 = n, andk = 1.
2. Whilenk > 1 do

/* DefineC values */
for each vertexv ∈ Vk do in parallel

SetC(v) = u whereWk(v, u) = min{Wk(v, u)}.
Mark (v,C(v)).

Shrink the set of directed trees obtained usingC to a rooted star using pointer doubling
/* Update for the next iteration */setk = k + 1, nk to the number of rooted stars,Wk to be the weights of the graph
of nk vertices induced by viewing each star as a single vertex.

end-while
3. Output the marked edges. Notice that the marked edges haveto be translated to their original label.

In the following, we study the runtime of the above algorithmand some implementation issues. One
of the difficult issues in this algorithm is to construct the matrix Wk from the matrixWk−1. The central
operation is to find for two rootsr1, r2 ∈ Vk−1 the weight of the edges betweenr1 andr2 in Wk. The
required weight ismin{Wk−1(u, v)|C(u) = r1, C(v) = r2}. To compute this, we proceed as follows.

Group the vertices ofwk−1 according to the definition ofC and for each group find the minima with
respect to every vertex in the group. This can be seen as resulting in a matrix of sizenk−1 × nk. The step
involves sorting according toC values and the weights inWk−1. Now, perform a similar kind of grouping
on the rows of thenk−1 × nk matrix similarly. It can be then seen that these operations can be done in
O(log nk−1) time using a total ofO(nk−1 log nk−1) operations.

Finally, we have that a MST of an undirected graph can be comptued inO(log2 n) time usingO(n2)
operations on a CREW PRAM.

