
A Comparison of Data-Parallel Algorithmsfor Connected ComponentsJohn GreinerAugust 18, 1993CMU-CS-93-191School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213AbstractThis paper presents a pragmatic comparison of three parallel algorithms for �nding connected components,together with optimizations on these algorithms. Those being compared are two similar algorithms byAwerbuch and Shiloach [2] and by Shiloach and Vishkin [19] and a randomized contraction algorithm byBlelloch [7], based on algorithms by Reif [18] and Phillips [17]. Major improvements are given for the �rsttwo which signi�cantly reduces the super-linear component of their work complexity. An improvement isalso given for randomized algorithm, and this algorithm is shown to be the fastest of those tested. Thesecomparisons are presented with NESL data-parallel code as executed on a Connection Machine 2.This research was sponsored in part by the Defense Advanced Research Projects Agency, CSTO, under the title\The Fox Project: Advanced Development of Systems Software", ARPA Order No. 8313, issued by ESD/AVS underContract No. F19628-91-C-0168, and in part by the ONR Graduate Fellowship Program.The views and conclusions contained in this document are those of the author and should not be interpreted asrepresenting o�cial policies, either expressed or implied, of the Defense Advanced Research Projects Agency or theU.S. Government.

Keywords: Computations on discrete structures, Data-parallel languages, Connected components algo-rithms

1. IntroductionThe complexity of various PRAM algorithms has received much attention, but there has been relatively littlework on the implementation and pragmatic e�ciency of many of these algorithms. Moreover, much of thiswork has been for algorithms having regular communication patterns. More recently, attention has turned tothe many common algorithms with irregular communication patterns, particularly graph algorithms havingdata-dependent communication.One such problem is �nding the connected components of a graph. Given a graph G = (V;E), whereV is a set of nodes (of size n) and E is a set of edges (of size m), the connected components of G are thesets of nodes such that all nodes in each set are mutually connected (reachable by some path), and no twonodes in di�erent sets are connected. While this de�nition makes sense for both directed and undirectededges, the usual assumption for this problem is that edges are undirected.1 This problem is most commonin vision, to group pixels during image analysis, in physics, as part of the Swendsen-Wang algorithm forcluster identi�cation [20], and VLSI design, for net extraction from circuit masks. For example, in vision, itis so important that some have even proposed specialized hardware for this algorithm, e.g., [23].There has been much theoretical work on PRAM algorithms for �nding the connected components of agraph, some of which are provably work-optimal. Much less work has pursued the pragmatic aspects of thesealgorithms. This paper compares implementations and provides optimizations of three algorithms, thoseof Shiloach and Vishkin [19], Awerbuch and Shiloach (A&S) [2], and a \random mate" (RM) algorithm ofBlelloch [7]. The former two algorithms are quite similar and require O(m logn) work. The latter randomizedalgorithm uses the random mating of Reif [18], combined with the graph contraction of Phillips [17]. Thisalgorithm is also O(m logn) work in the worst case, although for many classes of graphs, including planargraphs, it is O(m) with high probability.Obviously, there are many other algorithms that could be added to this comparison. These algorithmswere chosen because of their simplicity and applicability to all classes of graphs. In contrast, the numerousalgorithms in use in physics and vision typically only work on grids2. They also mesh stylistically with theNESL language in that they use concurrent reads and writes and are not specialized to a single communicationarchitecture.Two measures are used for making comparisons. Execution times on a Connection Machine 2 are givenfor the algorithms, using various sizes and classes of graphs. The random mate algorithm and the optimizedA&S and S&V algorithms contract the graph and allow a machine-independent metric, the remaining numberof edges.The original presentation of the A&S algorithm is particularly ine�cient because it doubles the size of thegraph. After eliminating this ine�ciency, the A&S variants generally outperform their S&V counterparts bya margin of approximately 5{10%. The remaining optimizations on these algorithms improve the algorithmsby another factor of 2{3, depending on the structure of the graph. A modest optimization for randommate gives a speedup of about 5%. The random mate algorithms are theoretically superior to the S&V andA&S algorithms on some classes of graphs such as planar graphs. Furthermore, they are generally better inpractice on most graphs, with the exceptions of small graphs and dense graphs (at least within the availablememory size).Code is given for the algorithms in the data-parallel style in the language NESL (Version 2.6). NESLsyntax is similar to that of Standard ML, with data-parallel primitives corresponding to concurrent readsand writes.The remainder of the introduction outlines the data-parallel paradigm and the NESL language, in par-ticular. Section 2 describes the basic algorithms, while Section 3 describes modi�cations to these algorithms.1Here, only the random mate-based algorithms require this assumption.2The Swendsen-Wang algorithms are based on breadth-�rst search, which does work on all graphs.1

Sections 4 and 5 describe the experiments and a summary of the results.1.1. Data parallelismThe more commonly used models of parallelism feature multiple threads of control and are collectively knownas control parallelism. Typically, a program can create an unbounded number of subprocesses communicatingto each other in arbitrary patterns and each using di�erent information such as separate control stacks,program counters, and local data. This exibility can complicate programming beyond comprehension andlead to problems when debugging.In contrast, data parallelism limits the programmer to a model of a single thread of control. Theparallelism is constrained to replicating the thread of control over a collection of data. For example, twok-sequences of data would be stored, at least conceptually, so that the each of the corresponding elementsof the two sequences are placed on one of k (virtual) processors. A function can then be mapped overthe collection so that each processor performs the function on its local data. Applications are assumed tohave collections of data large enough for the bulk of a program's work to be encapsulated in such parallelcomputations. Conventional uniprocessor programming idioms adapt easily to this restricted model, andmany parallel algorithms are naturally written in this style.1.2. NESLNESL is a strongly typed, functional, data-parallel language developed under the direction of Blelloch. Itsonly parallelizable data collection type is the sequence, and it features e�cient implementation of nestedsequences. Syntactically, it resembles Standard ML, and it uses a similar polymorphic type inference system.Like many other functional languages, it has no primitive looping construct. Instead, recursion is used toimplement loops, and uses of \tail recursion" are compiled into the equivalent iterative code using jumps,rather than procedure calls.Any function may be mapped element-wise over a sequence, and it provides a �xed set of scan opera-tions (also known as pre�x sums) and arbitrary reorderings of sequences for communication. The primarycommunication constructs are� seq -> ind: Returns the values of the sequence at the indicated indices. Any given index may occurmore than once in the sequence of indices, corresponding to a concurrent read of the correspondingvalue.� seq <- ind val: Each element of sequence ind val is an pair of an index and value. Returns thesequence that is like seq except that the given values are placed at the corresponding indices. Anygiven index may occur multiple times, corresponding to a concurrent write.� fexp : id1 in seq1; . . . | condg: This syntax is based on standard set notation. In turn, bindthe identi�ers to each value in the corresponding sequences. Evaluate the expression for each set ofbindings which satis�es the condition, and return a (packed) sequence of the results.Implementations of NESL on hardware without concurrent reads and writes (CRCW) must simulate thesefeatures in software. For a more detailed description of the language, see [6].2. Previous Parallel AlgorithmsThis section outlines the three algorithms fromwhich re�nements were made. For more detailed explanations,refer to the original papers as cited. The NESL implementations of these algorithms are given in Appendix A.2

The �rst two algorithms are based on forming and combining trees of nodes, such that all nodes in agiven tree belong to the same connected component. These algorithms combine trees to �nd the maximalsuch trees. The roots serve as representative elements of the trees, and the algorithms return the sequenceof the roots corresponding to each node.The trees are represented by a sequence of the parent of each node. There are two basic operations,hooking and shortcutting on trees, as diagrammed in Figure 1. Hooking combines pairs of trees to formlarger trees if there is an edge between the two trees. Shortcutting attens trees to improve the amortizede�ciency of hooking. When neither operation can be applied, all trees are of depth one, stars, and the treescorrespond to the maximal connected components. If shortcutting is performed often enough and hookingis done as to avoid cycles, the algorithms require O(logn) hooking steps, each of O(m) work, so that thealgorithms require O(m logn) work.
tree1 tree2

tree3 = tree2 hooked onto tree1

shortcutted tree3Figure 1: Hooking and shortcutting.The third algorithm contracts the graph by combining nodes and edges such that the connected com-ponents of the new graph are the same as those of the original. The graph is contracted until no edges areleft, so the remaining nodes correspond one-to-one to the connected components. Additional information issaved to compute to which connected component belongs each of the original nodes. It requires O(logm)iterations, each of O(mi) work, where mi is the number of edges in the graph remaining on the ith iteration.The total work complexity is O(m) if the ratio of edges to nodes in within a certain range. As Reif andGazit show, all other graphs can be transformed into the appropriate class in O(m) work.2.1. Shiloach and VishkinThe algorithm of Shiloach and Vishkin [19] uses several data structures to represent the trees of nodes: theparent relation of the tree, the parent relation from the previous iteration of the algorithm, and a sequenceindicating which iteration each node was last named a parent of some other node. (The cryptic name qsfor this last sequence is taken directly from S&V.) The n nodes are named by the integers 0 . . .n� 1. Theparent relation is then a sequence of integers, where the ith element of the sequence is the parent of node i.The �rst step of each iteration shortcuts the trees and initializes the data structure qs for the iteration.Next, two di�erent hooking steps are used. Conditional hooking combines two trees so that the larger3

numbered root is below the smaller. Unconditional hooking only hooks stagnant trees onto other trees. Atree is stagnant if it has not been involved in shortcutting or conditional hooking on this iteration. Thelatter kind of hooking is necessary to avoid a worst case of n� 1 iterations, as fully described by S&V. It isthis test for a root being stagnant which uses the third piece of information encoding the tree.A second shortcutting step simpli�es the complexity analysis given by S&V. While it improves perfor-mance, its use is not necessary to result in O(m logn) work.The algorithm terminates if no node changes were made to the trees, as indicated by the qs sequence.For the sake of clarity, the given code calculates the termination condition slightly di�erently than in S&V.2.2. Awerbuch and ShiloachThe algorithm of Awerbuch and Shiloach [2] is a simpli�cation of that of Shiloach and Vishkin. In particular,unconditional hooking is simpli�ed so that instead of hooking stagnant trees onto other trees, only stars canbe hooked onto trees. The advantage is that testing for membership in a star can be done without calculatingthe extra data structure qs of S&V. Instead, the test uses only properties of the parent relation. On theother hand, the new star membership test is relatively expensive because of communication costs. So, therooted tree is represented by a single parent relation.However, as argued by A&S, for the algorithm's invariants to hold on the �rst iteration, an extra n\dummy" nodes and n edges are added to the graph. These edges connect the ith original node with the ithdummy node.Also, the optional shortcut is eliminated (presumably for simplicity). The AS starcheck routine is alsoused for termination of the algorithm: it halts when all nodes are members of stars. At that point, theparent of each node is the root of its connected component. Thus, the resulting control structure loops overthe two forms of hooking, shortcutting, and testing for the termination condition.2.3. Random MateThe random mate algorithm was originally an adaptation by Reif [18] of the S&V algorithm, replacingboth kinds of hooking with a single randomized version, called mating. In this step, each node is randomlyassigned one of two labels, plus or minus, with equal probability. Edges from positive to negative nodesare selected, with the restriction that only one edge may be selected pointing from any given node. Thisrestriction is implemented via an implicit concurrent write which arbitrarily picks a single target for thenode.This algorithm by Blelloch combines mating with the graph contraction of Phillips [17], so that eachsuccessive iteration works with a smaller graph. The edges are contracted with the selected, or active nodes,producing supernodes. The edges are contracted by renaming with the new supernodes and removing self-edges, although because of conicts, not necessarily all of the active edges are used for contraction. Thus,these edges correspond to the parent relation of the previous algorithm. After the graph has been fullycontracted, the remaining nodes represent the connected components of the original graph, and correspondto the roots of the trees formed in the previous algorithm. Figure 2 represents one of these iterations.Next, the graph must be re-expanded, using the active edges, to propagate the name of these �nalsupernodes to the nodes of the original graph. For this purpose, the active edges of each iteration are placedon the run-time recursion stack.The implementation of the algorithm is given in Appendix A. The nodes of the graph are representedby the endpoints of the edges. As mentioned, the algorithm is recursive, so that the active edges are placedon the stack for use during expansion. The graph is expanded as the recursion stack unwinds, and the4

nodes and active edges contracted nodes and shrunk edgesFigure 2: One iteration of contraction.supernode relation returned from recursive calls and the active edges are used to propagate the name of eachroot to all nodes in its component.An unconventional feature of this version of partitioning (RM partition) is that the mating is not trulyrandom. The \randomness" is generated by using on the ith iteration the (i mod log2 n)th bit of the (arbi-trary) node numbers. A true pseudo-random alternative (RM3) is given in Appendix B, but experimentsindicate the given code to be better in practice because partitioning with this method requires much lesstime-consuming communication. Furthermore, it produces partitions with similar numbers of active edges,except that the randomized version typically �nds larger partitions on very sparse graphs.3. Modi�cationsAll of the new algorithms are modi�cations of the previous three. Major changes are made to the A&S andS&V algorithms, drastically reducing the constant on the c(m logn) term of the O(m logn) complexity. Amodest improvement is also given for random mate.3.1. Shiloach and Vishkin-basedThe following changes are made to the original algorithm (SV1) and are further described in this section.� Shortcutting more aggressively. (SV2)� Using unconditional hooking less often. (SV3)� Contracting the edges of the graph, as in random mate. (SV4)For simplicity, each algorithm includes all previous optimizations, so that, for example, SV4 uses all of thesemodi�cations.To further reduce the depth of the trees, extra shortcutting may be performed each iteration. Flattertrees allow the termination condition to be detected earlier. For a given (�nite) tree, only a �nite amountof shortcutting is useful, until a �xed point is found. The given heuristic closely estimates the number ofshortcuts needed to reach this point.An alternative is to guarantee that the maximal amount of shortcutting is performed. That can be doneby repeatedly shortcutting until the operation does not further change the graph, as in shortcut max. Inpractice, however, the improvement resulting from the graph contracting more quickly is more than o�set5

by the higher cost incurred by testing whether the shortcut operation modi�ed the graph.3Unconditional hooking is only necessary in a small percentage of cases. Empirical evidence suggests thata relatively small number of edges are ever used by the step. Only executing the step occasionally (here,every third iteration) improves performance, while still avoiding the need for a linear number of iterations.Also, since the number of live edges is by far the greatest during early iterations, it is best to avoid usingthe step then.The next modi�cation is an adaptation from the random mate algorithm. On each iteration, the liveedges are replaced by renaming the endpoint with the parents of the endpoints, and then eliminating self-edges. In this case, aggressive shortcutting is especially bene�cial since atter trees result in more edgesbeing contracted.Since a node's parent is in the same connected component as the node, if there were a path between twonodes using the old edges, there is still a path between the nodes using the new live edges and the parentrelation. Thus, all information necessary for �nding the connected components remains. Even though thenumber of live edges monotonically decreases, the complexity of each iteration is still bounded by the numberof nodes, because of the shortcutting operations.However, this modi�cation is only an improvement for some classes of graphs. In particular, it is notbene�cial if the number of edges in the graph is much larger than the number of nodes (e.g., m � n2). SinceO(n) edges and nodes are eliminated per iteration, in this case a proportionally small fraction of the edgesis being removed, and the cost of the operation overshadows the bene�ts.Additionally, if there are no live edges left, it is clear that further iterations of the algorithm performonly shortcutting, so a special case is made of this to avoid overhead on the last iterations.For brevity, these changes are grouped together in the presentation, as shown in the following code forthe main loop. However, each is independently useful.function SV_alg4(ps,qs,es,iter) =if zerop(#es) then shortcut_max(ps)else let (ps1,qs1) = SV_init(ps,qs,iter);(ps2,qs2) = SV_cond_hook(ps1,ps,qs1,es,iter);ps3 = if uncond_hookp(iter) then SV_uncond_hook(ps2,qs2,es,iter) else ps2;in if not(any({q == iter : q in qs2})) then ps3else let ps4 = shortcut_n(ps3,shortcut_heuristic(#es));in SV_alg4(ps4,qs2,shrink_edges(ps4,es),1+iter) $3.2. Awerbuch and Shiloach-basedThe following changes are made to the original algorithm (AS1) and are described further in this section.� Modifying the �rst iteration, so that dummy nodes and edges are unnecessary. (AS2)� Optimizing detection of the termination condition. (This optimization is later made redundant by the�nal modi�cation.) (AS3)� Shortcutting more aggressively. (AS4)� Using unconditional hooking less often. (AS5)3On the other hand, by guaranteeing that all trees are stars, further optimizations could be made. One precondition ofconditional hooking is trivially satis�ed, and unconditional hooking is entirely unnecessary. This is further pursued in [10].6

� Contracting the edges of the graph, as in random mate. (AS6)The most glaring e�ciency problem with the original presentation is the addition of dummy nodes andedges, e�ectively doubling the size of the graph. These nodes and edges are used only on the �rst iterationto establish the tree structure expected by the hooking steps. After the �rst iteration, they will always beat the bottom of the trees and be irrelevant. In order to eliminate these dummy nodes and edges, one canuse specialized versions of the hooking steps (The functions AS lone cond hook and AS lone uncond hookin Appendix B.) on the �rst iteration.Another bottleneck is the star membership test, which is relatively expensive. As shown in the codebelow, its use as a test for termination of the main loop can be specialized to AS starcheck all, whicheliminates most of the communication costs of AS starcheck.% Equivalent to all(AS_starcheck(ps)), but faster. %function AS_starcheck_all(ps) = all({p == gp : p in ps; gp in shortcut(ps)}) $The remaining modi�cations are the same as made in Section 3.1 for the similar S&V algorithm. Themain loop of the resulting algorithm is shown below.function AS_alg6(ps,es,iter) =if zerop(#es) then shortcut_max(ps)else let ps1 = AS_cond_hook(ps,es);ps2 = if uncond_hookp(iter) then AS_uncond_hook(ps1,es) else ps1;ps3 = shortcut_n(ps2,shortcut_heuristic(#es));es1 = shrink_edges(ps3,es);in AS_alg6(ps3,es1,1+iter) $3.3. Random Mate-basedThe one optimization of random mate is to ensure that each iteration has a non-zero number of active edgesso that the algorithm does not loop through the entire RM reduce graph routine without the graph changing,as in the following function.function RM_active_edges2(es,bits,step) =let aes = {e : e in es; active in RM_partition(es,step) | active};newstep = rem(step+1,bits);in if zerop(#aes) then RM_active_edges2(es,bits,newstep)else (flip_edges(aes,{nthbit(from,step) : from in edges_froms(aes)}),newstep) $A more general test would require that a \signi�cant" number of active edges be selected in order to usethe partition. But then the algorithm sometimes discards many partitions until one is used, and in practice,this did not improve the algorithm.4. Testing MethodTo test the performance and the algorithms, four di�erent classes of graphs were used. Test runs used subsetsof these classes of graphs generated by randomly choosing a uniformly distributed fraction of each graph'sedges. 7

� Subsets of two-dimensional toroidal grids: Each vertex has a subset of the four neighbors of such agrid.� Subsets of three-dimensional toroidal grids: Each vertex has a subset of the six neighbors of such agrid.� \Tertiary" graphs: Each vertex has three neighbors picked uniformly at random.� Subsets of complete graphs: Each vertex is connected to a subset of all other vertices. To some degree,these represent the general case.Grid-based graphs are commonly used in both vision and physics. Subsets of complete graphs (\randomgraphs") represent the most general, and frequently worst, case. Tertiary graphs are a representative inter-mediate case.For the grid-based graphs, two di�erent fractions of edges were used, resulting in graphs which are orare not highly connected. Graphs having more (less) than two edges per vertex are (not) highly connected,since for the graph to be fully connected, each vertex must have at least two edges. So, for 2D grids, using arandom subset of more than half of the edges will result in a relatively highly connected graph. The testinghere uses subsets of 30% and 60% of the edges. Similarly, for 3D grids, we choose fractions less and greaterthan one third: 20% and 40%. For complete graphs, �xed fractional subsets are again used. However, sincethe number of edges increases quadratically, larger graphs are increasingly connected.We now de�ne some standard terms of graph theory. These properties of graphs will e�ect the perfor-mance of the algorithms and allow us to explain our results.The degree of vertices in the graph is the number of incident edges at each vertex and is a measure of theconnectivity of the graph. Vertices in two-dimensional grids have a degree of four; three-dimensional grids,six; tertiary graphs, at most six; and random graphs, up to n.An edge separator of a graph is a set of edges which, if removed, will separate the graph into independentsubgraphs of approximately the same size. The size of the separators of a graph is another measure ofconnectivity. The divide-and-conquer strategy of random mate tends to perform well on graphs with smallseparators. Two-dimensional grids have separators of size O(pn); three-dimensional grids, O(3=2pn); tertiarygraphs, O(n); and random graphs, O(n).The diameter of a graph is the length of the longest of the shortest paths between all vertices in the graph.A large diameter indicates that the trees of the algorithms will be deep, so that the e�ects of shortcutting willbe more signi�cant. Two-dimensional grids have diameters of size O(pn); three-dimensional grids, O(3pn).Tertiary and random graphs typically have much smaller diameters, e.g., the expected size for tertiary graphsis O(logn).Recall that the A&S and S&V algorithms assume that each edge is listed twice, pointed in each direction,whereas the random mate algorithms need only one copy of each edge. So, the former algorithms must usetwice as many edges to represent the same graph.The NESL code was executed4 on one quarter of a 32K processor Connection Machine 2, i.e., 8K pro-cessors each with 32KB of local memory per processor. Preliminary timings obtained on a Cray Y-MP haveentirely similar relative results.4NESL is currently compiled to VCODE which is then interpreted.8

5. Experimental ResultsThe following plots compare the performance of the algorithms on such graphs. Most plots display averagerunning times of several algorithms for graphs, ranging in size upto as bounded by the available memory.Execution times are taken as the average over ten trials each, whereas edge and node counts are taken fromsingle trials.Figures 3 and 4 show the percentage of the original edges that remain after each iteration of the optimizedA&S and RM algorithms. Naturally, this uses the version of A&S which does contract the edges. These plotsuse the largest graphs allowed in the available memory, although smaller graphs produced similar results.
0

20

40

60

80

100

0 1 2 3 4 5 6

%

o
f

e
d
g
e
s

iteration

2d30
2d60
3d20
3d40

tert100
rand2

Figure 3: Percent of original edges remaining aftereach iteration of AS6 0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45

%

o
f

e
d
g
e
s

iteration

2d30
2d60
3d20
3d40

tert100
rand2

Figure 4: Percent of original edges remaining aftereach iteration of RM2For tertiary, and especially random graphs, the random mate algorithm uses relatively few iterations toterminate, but initially contracts the graph very little. Thus, these few iterations are relatively expensive.For the grid-based graphs, the early contraction is very quick, but many iterations are needed to eliminatethe remaining edges, particularly for the more highly connected graphs.On average, half of the remaining edges are active on each iteration of randommate. As a result, betweena quarter and a half of the remaining non-singleton nodes are removed each iteration, depending on the classof graph. And as shown by [17], planar graphs have at most a constant multiple more edges than nodes.And since random mate contracts planar graphs into planar graphs, the number of edges decreases at asimilar rate to that of the nodes. This plot empirically con�rms that fact, and indicates that the same likelyholds for three-dimensional grids.For random graphs, again about the same number of edges as nodes are contracted during the earlyiterations. But, this is only a small fraction of the number of edges, which is initially proportional to thesquare of the initial number of nodes. Thus during contraction, the graph becomes increasingly dense untilit is almost fully connected.5 But, the the number of remaining edges is bounded by the square of thenumber of remaining nodes. This upper bound now becomes relevant, and the the edges quickly contract.For tertiary graphs, a similar phenomenon is seen, except that since the initial number of edges is only aconstant multiple of the initial number of nodes, the early iterations contract a greater fraction of the edges.5A similar mating algorithm is used by Gazit [8] to transform sparse graphs into dense graphs.9

The space complexity of random mate is dominated by the space needed for storing the active edgeson the stack.6 With high probability, this is proportional to the sum over all iterations of the number ofremaining graph edges. For grid-based graphs, the geometric decrease in the number of edges indicatesthat space complexity is a constant multiple of the number of edges. In general, it is at least bounded byO(m logm), the size of the edges multiplied by the number of iterations, although a tighter bound might beprovable. Compare this to the lower space complexity O(m) of the tree-based algorithms. The total numberof active edges stored could be bounded by m by only saving those active edges used for contraction.The plot for the optimized A&S algorithm is very similar. However, note that it uses a much smallernumber of iterations, partly because each iterations performs several shortcut operations.Figures 5 and 6 compare the optimized algorithms to each other on the toroidal grids. The formercompares the optimized S&V, A&S, and RM algorithms on two dimensional grids, using 30% of the edges;it also compares the same A&S and RM algorithms using 60% of the edges. The latter compares thesealgorithms on the three dimensional grids using 20% and 40% of the graph edges.
0

5

10

15

20

25

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

C
P
U

s
e
c
o
n
d
s

number of nodes

SV4-2d30
AS6-2d30
RM2-2d30
AS6-2d60
RM2-2d60

Figure 5: Optimized algorithms on 2D grids, 30% and 60%Not surprisingly, the similar S&V and A&S algorithms result in very similar running times, although thelatter is up to 23% faster on the graphs tested here. Randommate outperforms both of the other algorithmson all but the smallest of grid-based graphs. Within the range of sizes shown here, RM is up to 288% fasterthan A&S. Since random mate has a better expected work complexity for these graphs, this comparativeadvantage grows with graph size.Figure 7 again compares the optimized S&V and A&S algorithms, as well as all of the RM algorithmson \random" graphs. Here, 2% of the edges of the complete graphs are used. Recall that RM3 uses thepseudo-random partitioning, which is clearly very costly on these graphs. In fact, this holds for all graphstested. While random mate is still faster than both A&S and S&V, its advantage is slimmer than with thegrids. Random mate is consistenly about 50% faster than A&S.Similarly, Figure 8 uses tertiary graphs to compare all of the A&S algorithms described. Each of the �rst�ve algorithms consistently outperforms the previous algorithms. While not plotted here, this also holdsfor the other classes of graphs, so that each of the corresponding modi�cations is indeed an optimization.However, the �nal modi�cation, that of contracting the edges of the graph, is obviously not bene�cial is this6For simplicity, we are here assuming that n < m. In general, n should be added to each of these space complexities.10

0

5

10

15

20

25

30

0 200000 400000 600000 800000 1e+06

C
P
U

s
e
c
o
n
d
s

number of nodes

SV4-3d20
AS6-3d20
RM2-3d20
AS6-3d40
RM2-3d40

Figure 6: Optimized algorithms on 3D grids, 20% and 40%
0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000

C
P
U

s
e
c
o
n
d
s

number of nodes

SV4-rand2
AS6-rand2
RM1-rand2
RM2-rand2
RM3-rand2

Figure 7: Optimized algorithms and all RM algorithms on random graphs, 2%11

0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000

C
P
U

s
e
c
o
n
d
s

number of nodes

AS1
AS2
AS3
AS4
AS5
AS6

Figure 8: All A&S algorithms on tertiary graphscase. As previously discussed, contracting the edges is not cost-e�ective for the relatively dense tertiary andrandom graphs, while it is an improvement for the grid-based graphs.6. Conclusions and Future WorkPrevious work on parallel algorithms for connected components has concentrated on theory and largelyignore pragmatics. This paper has investigated implementations of algorithms by Awerbuch and Shiloach,Shiloach and Vishkin, and Blelloch. We have shown that the published versions of the former two algorithmsare ine�cient, as compared to the latter.But, several modi�cations have been presented to signi�cantly improve both the A&S and S&V algorithmsby constants factors, with a overall speedup factor of approximately �ve for A&S. Two di�erent optimizedA&S algorithms are given, such that one (AS5) is better for the dense tertiary and random graphs, and theother (AS6) is better for the grid-based graphs. Nevertheless, the random mate algorithm is faster than allof the other algorithms tested here, for all but the smallest of graphs.For a more detailed analysis, accurate cost models of the algorithms should be developed. In particular,this would allow a theoretical basis for improving the several heuristics used.While the edge-contracting modi�cation to the S&V and A&S algorithms is adapted from random mate,further combining of the algorithms might be useful. For example, the more expensive pseudo-randompartitioning could be used only on the �nal iterations of random mate, when its higher cost may be o�setby the better partitions it generates then. Or, iterations of random mate and A&S could be interleavedto combine strengths. Bounding the maximum number of A&S iterations would retain the O(m) workcomplexity of random mate. Gazit [8] uses one such combination, by using a mating algorithm to preprocesssparse graphs, before using an algorithm based on S&V.One such hybrid algorithm has been implemented which incorporates both shortcutting and graph con-traction. Results indicate that it consistently outperforms all algorithms tested here [10].Another possible modi�cation for random mate, suggested by Dafna Talmor, addresses the worst case12

of random mate of many active edges pointing to a single node. On each iteration, the active edges wouldbe selected, and the edges contracted as presently done, which would only use one edge in this worst case.Next, those unused active edges would be ipped and serve as the active edges for a second contraction.AcknowledgementsThanks go to Guy Blelloch for lots of help with the algorithms and NESL, and Jay Sippelstein for help withNESL.A Code of original algorithmsThe following are common routines used by the algorithms.function edges_froms(es) = {from : (from,to) in es} $function edges_tos(es) = {to : (from,to) in es} $function parents_edges(ps,es) ={(pfrom,pto) : pfrom in ps -> edges_froms(es); pto in ps -> edges_tos(es)} $function shrink_edges(ps,es) ={(pfrom,pto) : (pfrom,pto) in parents_edges(ps,es) | pfrom /= pto} $% Convert edges from undirected to directed %function direct_edges(es) = es ++ flip_edges(es,{t : es}) $function flip_edges(es,flips) ={(select(flip,to,from),select(flip,from,to)) : (from,to) in es; flip in flips} $function shortcut(ps) = ps -> ps $The following is the original S&V algorithm.function SV_init(ps,qs,iter) =let gps = shortcut(ps) in (gps,qs <- {(gp,iter) : gp in gps; p in ps | gp /= p}) $function SV_cond_hook(newps,ps,qs,es,iter) =let newp_es1 = parents_edges(newps,es);newp_es2 = {(newpfrom,newpto) : (newpfrom,newpto) in newp_es1;pfrom in ps -> edges_froms(es)| (newpfrom == pfrom) and(newpto < newpfrom)};in (newps <- newp_es2,qs <- {(newpto,iter) : newpto in edges_tos(newp_es2)}) $function SV_stagnantp(p,gp,qp,iter) = (p == gp) and (qp < iter) $function SV_uncond_hook(ps,qs,es,iter) = 13

let pes = parents_edges(ps,es);in ps <- {(pfrom,pto) : (pfrom,pto) in pes;gpfrom in ps -> edges_froms(pes);qpfrom in qs -> edges_froms(pes)| SV_stagnantp(pfrom,gpfrom,qpfrom,iter) and (pfrom /= pto)} $function SV_alg1(ps,qs,es,iter) =let (ps1,qs1) = SV_init(ps,qs,iter);(ps2,qs2) = SV_cond_hook(ps1,ps,qs1,es,iter);ps3 = SV_uncond_hook(ps2,qs2,es,iter);in if not(any({q == iter : q in qs2})) then ps3else SV_alg1(shortcut(ps3),qs2,es,1+iter) $% find connected components of graph using S&V's alg. %function cc_SV1(es,num_ns) =SV_alg1(index(num_ns),dist(0,num_ns),direct_edges(es),0) $The following is the original A&S algorithm. Included in the comments of the provided code are Awerbuchand Shiloach's own descriptions.7% If G(i) = D(i) and D(i) > D(j) then D(D(i)) := D(j) %function AS_cond_hook(ps,es) =let pes = parents_edges(ps,es);in ps <- {(pfrom,pto) : (pfrom,pto) in pes; gpfrom in ps -> edges_froms(pes)| (gpfrom == pfrom) and (pfrom > pto)} $% ST(i) := TRUE; If D(i) \= G(i) then ST(i),ST(G(i)) := FALSE; ST(i) := ST(G(i)) %function AS_starcheck(ps) =let gps = shortcut(ps);sts = {p == gp : p in ps; gp in gps} <- {(gp,f) : p in ps; gp in gps | p /= gp};in sts -> gps $% If i belongs to a star and D(i) /= D(j) then D(D(i)) := D(j) %function AS_uncond_hook(ps,es) =ps <- {(pfrom,pto) : (pfrom,pto) in parents_edges(ps,es);instarp in AS_starcheck(ps) -> edges_froms(es)| instarp and (pfrom /= pto)} $function AS_alg1(ps,es,iter) =let ps1 = AS_cond_hook(ps,es);ps2 = AS_uncond_hook(ps1,es);in if all(AS_starcheck(ps2)) then ps2 else AS_alg1(shortcut(ps2),es,1+iter) $% For all nodes i, add node i' (= i + num_ns) and add edge (i,i') %function add_dummy_nodes(es,num_ns) =(es ++ {(n,n + num_ns) : n in index(num_ns)},num_ns + num_ns) $function remove_dummy_nodes(ps) = take(ps,#ps / 2) $7They use the naming scheme of D(i) as the parent of the source node of the unnamed edge, and G(j) as the grandparentof the edge's target node. 14

function cc_AS1(es,num_ns) =let (newedges,newnum_ns) = add_dummy_nodes(es,num_ns);in remove_dummy_nodes(AS_alg1(index(newnum_ns),direct_edges(newedges),0)) $And the following is the code for the original random mate algorithm.function RM_reduce_graph1(ns,es,bits,step) =if zerop(#es) then nselse let % contraction %aes = RM_active_edges1(es,step);new_ns = ns <- aes;newedges = shrink_edges(new_ns,es);old_roots = RM_reduce_graph1(new_ns,newedges,bits,rem(step+1,bits));in % Compute new roots -- expansion %old_roots <- {(afrom,v) : afrom in edges_froms(aes);v in old_roots -> edges_tos(aes)} $function RM_partition(es,step) ={nthbit(from,step) xor nthbit(to,step) : (from,to) in es} $function RM_active_edges1(es,step) =let aes = {e : e in es; active in RM_partition(es,step) | active};in flip_edges(aes,{nthbit(from,step) : from in edges_froms(aes)}) $function nthbit(n,bit) = zerop(lshift(1,bit) and n) $% Find the connected components by reduce_graph %function cc_RM1(es,num_ns) =if plusp(num_ns)then RM_reduce_graph1(index(num_ns),es,trunc(log(float(num_ns),2.0)) + 1,0)else [] int $B Supplementary Modi�cations CodeThe following is supplementary NESL code for the modi�cations to the algorithms.function shortcut_n(ps,n) =if n <= 0 then ps else shortcut_n(shortcut(ps),n -1) $function shortcut_max(ps) =let gps = shortcut_n(ps,4);in if all({p == gp : p in ps; gp in gps}) then gps else shortcut_max(gps) $% Heuristically estimate number of shortcuts until only stars left %function shortcut_heuristic(numedges) =if zerop(numedges) then 1 else min(1,trunc(log(float(numedges),10.0)) - 1) $% Test if should do uncond_hook this iterationuncond_hook expensive on early iterations %function uncond_hookp(iter) = zerop(rem(1+iter,3)) $15

The following functions are for the A&S algorithms.function cc_AS6(es,num_ns) =let ps = index(num_ns);es = direct_edges(es);ps1 = AS_lone_cond_hook(ps,es);ps3 = shortcut_n(ps1,shortcut_heuristic(#es));es1 = shrink_edges(ps3,es);in AS_alg6(ps3,es1,0) $% Starchecking for 1st iter. IF no dummy nodes %function AS_lonecheck(ps) =let ns = index(#ps);in {p == n : p in ps; n in ns} <- {(p,f) : p in ps; n in ns | p == n} $% If G(i) = D(i) and D(i) > D(j) then D(D(i)) := D(j)Use 1st iter. IF no dummy nodes, when G(i) = D(i). %function AS_lone_cond_hook(ps,es) =ps <- {(pfrom,pto) : (pfrom,pto) in parents_edges(ps,es) | pfrom > pto} $% If i belongs to a star and D(i) /= D(j) then D(D(i)) := D(j)Use 1st iter. IF no dummy nodes %function AS_lone_uncond_hook(ps,es) =ps <- {(pfrom,pto) : (pfrom,pto) in parents_edges(ps,es);in_starp in AS_lonecheck(ps) -> edges_froms(es)| in_starp and (pfrom /= pto)} $The following is a truly pseudo-random version of partitioning. Note the large amount of communicationnecessary. The extra argument flip nodeps is a sequence of the length of the number of nodes in theoriginal graph, which is allocated once at the beginning of the algorithm.% Randomly partition edge end_points into two halvesNeeds #flip_nodeps == max nodenum for efficiency %function RM_partition3(es,flip_nodeps) =let flip_nodeps = flip_nodeps <- {(from,zerop(rand(r))) : r in dist(2,#es);from in edges_froms(es)};flip_nodeps = flip_nodeps <- {(to,zerop(rand(r))) : r in dist(2,#es);to in edges_tos(es)};in ({flipfrom xor flipto : (flipfrom,flipto) in parents_edges(flip_nodeps,es)},flip_nodeps) $function RM_active_edges3(es,flip_nodeps) =let (actives,flip_nodeps) = RM_partition3(es,flip_nodeps);aes = {e : e in es; active in actives | active};in if zerop(#aes) then RM_active_edges3(es,flip_nodeps)else flip_edges(aes,flip_nodeps -> edges_froms(aes)) $References[1] Agrawal, Ajit; Nekludova, Lena; and Lim, Willie. A parallel O(logn) algorithm for �nding connectedcomponents in planar images. Technical report TMC-122. Thinking Machines Corp. February 1987.16

[2] Awerbuch, B. and Shiloach, Y. New Connectivity and MSF Algorithms for Ultracomputer and PRAM.In Proceedings of the International Conference on Parallel Processing, pages 175-179. 1983.[3] Das, S. K.; Deo, N.; and Prasad, S. Parallel graph algorithms for hypercube computers. In ParallelComputing, vol. 13, no. 2, pages 143{158. February 1990.[4] Blelloch, Guy E. Vector Models for Data-Parallel Computing. MIT Press, Cambridge, MA, 1990.[5] Kao, Ming-Ying and Shannon, Gregory E. Linear-processor NC algorithms for planar directed graphs.Technical report 306. Indiana University, Bloomington, Computer Science Dept. 1990.[6] Blelloch, Guy E. NESL: A Nested Data-Parallel Language. Technical Report CMU{CS{92{103,Carnegie Mellon University, January 1992.[7] Blelloch, Guy E. Unpublished CVL code. 1990.[8] Gazit, Hillel. An Optimal Randomized Parallel Algorithm for Finding Connected Components in aGraph. In SIAM Journal of Computing, Vol. 20, No. 6, December 1991.[9] Gopalakrishnan, P. S.; Ramakrishnan, I. V.; and Kanal, Laveen N. An e�cient connected componentsalgorithm on a mesh-connected computer. Technical report TR-1467, University of Maryland. 1987[10] Greiner, John and Blelloch, Guy. Data-Parallel Connected Components Algorithms. To appear in HighPerformance Computing, ed. Gary Sabot.[11] Hagerup, T. Optimal parallel algorithms on planar graphs. In Information and Computation, vol. 84,no. 1, pages 71{96. January 1990.[12] Hambrusch, Susanne and TeWinkel, Lynn. A study of connected component labeling algorithms on theMPP. In Proceedings of the Third International Conference on Supercomputing, vol. 1, pages 477{483.May 1988.[13] Han, Y. and Wagner, R. A. An e�cient and fast parallel-connected component algorithm. In Journal ofthe Association for Computing Machinery, vol. 37, no. 3, pages 626{642. July 1990.[14] Lim, Willie; Agrawal, Ajit; and Nekludova, Lena. A fast parallel algorithm for labeling connected com-ponents in image arrays. Technical Report TMC-124, Thinking Machines Corp. April, 1987.[15] Lim, Willie. Fast algorithms for labeling connected components in 2-D arrays. Technical report TMC-125, Thinking Machines Corp. November, 1987.[16] Pardalos, Panos M. and Rentala, Chandra S. Computational aspects of a parallel algorithm to �nd theconnected components of a graph. Technical report CS-89-01, Pennsylvania State University Departmentof Computer Science. 1989.[17] Phillips, Cynthia A. Parallel Graph Contraction. In Proceedings of the ACM Symposium on ParallelAlgorithms and Architectures, pages 148{157. June 1989.[18] Reif, John H. Optimal Parallel Algorithms for Integer Sorting and Graph Connectivity. Technical ReportTR-08-85, Harvard University, March 1985.[19] Shiloach, Yossi and Vishkin, Uzi.An O(logn) Parallel Connectivity Algorithm. In Journal of Algorithms,pages 57{67, 1982.[20] Swendsen, Robert H. and Wang, Jian-Sheng Nonuniversal Critical Dynamics in Monte Carlo Simula-tions. In Physical Review Letters, vol. 58, no. 2, pages 86{88. January 1987.[21] Woo, Jinwoon and Sahni, Sartaj. Hypercube computing: Connected components. Technical report TR-88-50, University of Minnesota Computer Science Department. July 1988.[22] Yang, Xue Dong. An improved algorithm for labeling connected components in a binary image. Technicalreport 89-981. Cornell University Department of Computer Science. March 1989.[23] Yang, Xue Dong.Design of fast connected components hardware. In Proceedings of the Computer SocietyConference on Computer Vision and Pattern Recognition, pages 937{944. 1988.17

