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Abstract 

Finding the best route towards a destination in the complex and 

complicated roads network of the modern cities is a major challenge in the attempt 

to improve traffic conditions. This project presents an application that offers a 

solution to this problem, based on the collaboration between drivers and the 

exchange of information between cars equipped with devices with short-range 

wireless communication capabilities. This application aims at reducing the total 

travel time towards a destination by providing the best route, dynamically 

computed using real time information about congestions and road conditions. This 

program comes as an extension for the “TrafficView” platform for inter-vehicle 

communication and was tested using a vehicular traffic simulator developed in 

collaboration with two other students. First, I give a general presentation of the 

simulator we have created. Second, I describe the algorithms used in computing a 

route and then the two mechanisms of dynamically route planning. Last, the results 

obtained during simulation are presented. 
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1. Introduction 

One of the most challenging problems modern cities face today is 

represented by the large number of cars traveling on their streets daily. The 

constantly increasing vehicular traffic is the main cause for traffic jams and air 

pollution, a permanent source of stress and a factor contributing to the 

development of some health problems.  Along with automobile accidents, they are 

two of the leading causes for decreased standard of living and loss of productivity. 

Due to the increasing number of people commuting daily between their homes and 

their jobs, primary roads and highways are also seriously affected.  

Municipalities and transportation authorities are making desperate efforts to 

speed up the traffic flow. The solutions that they currently rely on are 

infrastructure dependent. Some examples include cameras at intersections or 

sensors in the road that send information to a centralized authority. Drivers that 

want to find information about traffic conditions have to connect to this authority 

and download the information. Such solutions are very expensive to install and to 

maintain and offer no scalability or flexibility. 

Intelligent Transportation Systems (ITS)[1] are trying to solve these 

problems, aiming at relieving congestions, improving safety and enhancing 

productivity by developing new features and functionalities for individual vehicles. 

By equipping cars with wireless communication devices they can form ad-hoc 

networks (VANETS), in which Inter-Vehicle Communication (IVC) opens new 

perspectives for a broad range of applications. By gathering and disseminating 

information from and to other vehicles, this cooperative platform may provide 

many services to a driver. These services may refer to safety applications, like 

various warnings (brake, ice on road, intersection violation etc.), cooperative 

collision avoidance or mitigation, to applications concerned with operation and 

maintenance, like dynamic route planning, transmitting information on weather 
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conditions, and commercial applications like electronic payments, reservations, 

advertisements or file transfers.  

Finding the best route towards a destination in the congested roads network 

is a major challenge in the attempt to improve traffic conditions. By avoiding 

routes that are already jammed the driver considerably reduces the total trip delay 

and helps by not increasing the density of cars in already saturated streets.  

Modern road networks are very complex and complicated making the 

search for the best route difficult. Shortest path algorithms generally produce 

routes that are not suitable for human drivers while man made decisions many 

times prove to be inefficient and expensive because they result in excessive travel 

time. All these decisions are based on static information about roads and do not 

take into consideration what actually happens at the current time on those roads. 

 This is the case of GPS navigators currently on the market. They provide 

tools for route planning and route guidance but their decisions are based on static 

information.  

 Some solutions to this problem are based on the information received as an 

input from the driver. They use problem solving experience gained from previous 

trips to determine the best route for the diver [2]. Learning from experience just 

solves a small part of the problem. Even if it can be determined from many trials 

that some roads get jammed during some time intervals in particular week days, it 

does not take into consideration unpredictable events like accidents or unfavorable 

road conditions like ice. It also raises problems when traveling in unfamiliar 

territory but this can be tackled by learning from other drivers’ experience. 

Other solutions use the information obtained from infrastructure to 

dynamically generate the best route [7]. But they can be applied only for the roads 

that are monitored by previously deployed sensors (loop detectors in asphalt, 

cameras in intersections) and that allows cars to access this data. 
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This paper presents a two solution to this problem, based on the 

collaboration between drivers and the exchange of information between cars. 

Assuming that cars are equipped with wireless communication devices, with 

processing power and with GPS devices, they can collaborate in order to exchange 

information about traffic conditions and to dynamically determine which the best 

route towards a destination is.  

The collaborative based route planning systems presented here are intended 

as an extension for “TrafficView” [5], an IVC platform that can be embedded in 

the next generation of vehicles to provide the drivers with a real-time view of the 

road traffic far beyond what they can physically see. 

One application begins by statically computing a route towards a 

destination, based on a set of parameters associated to the roads: lane number, road 

type (speed limit) and distance. For this an efficient searching algorithm was used 

[2]. It then sends interrogations about traffic conditions on the roads it will travel 

and recalculates the route based on information received from other drivers 

(average speed, weather conditions or accidents). The other application is based on 

a hybrid mechanism formed by both infrastructure nodes and vehicles that 

exchange information so that cars can be routed by fixed infrastructure nodes on 

the best way towards their destination. 

These applications aim at reducing the total travel time towards a 

destination. The performances of these applications are studied by comparing the 

travel time obtained when using these applications with the duration of the same 

journey when only shortest path algorithms and static information are used in the 

route’s computation. 

The applications were tested using a traffic simulator developed in 

collaboration with two other students [3]. This is a java based discrete event 

simulator that runs a microscopic traffic simulator and a wireless communication 

model.  
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2. Simulation Environment 

2.1. TrafficView Platform 

The collaborative routing application comes as an extension to the 

“TrafficView” platform. This is a framework to disseminate and gather 

information about vehicles on the road. Using such a system, a vehicle driver 

becomes aware of the road’s traffic, which helps driving in situations with low 

visibility like foggy weather and creates a platform for transmitting information 

about road conditions like accidents or jams. 

TrafficView is an IVC system deployed over an ad-hoc 802.11 wireless 

network of vehicles. Its goals are to develop a network stack that can face the 

challenges of high mobility of nodes and frequent disconnections of topology and 

to create tools that can accurately model real traffic conditions. 

Each car is equipped with a GPS receiver, with a short-range wireless 

communication device, with processing power and a display unit. The 

“TrafficView” application obtains the car’s position from the GPS device and 

using a digital map, constructed from TIGER files offered by U.S. Census Bureau 

[15], it positions itself on a road, more precisely on a road segment. The accuracy 

of the GPS information is of a few feet in good weather conditions but it can 

decrease when used near tall buildings or in forests. Some other sources of error 

include ionosphere and troposphere delays, signal multi-path, receiver clock errors, 

orbital errors, number of visible satellites, satellite geometry/shading or even 

intentional degradation of the satellite signal. This is why a positioning on a road 

lane is still not possible. The GPS signal is also used to obtain time information, 

synchronizing all cars.  

After gathering this information, the car broadcasts it at regular time 

intervals. When receiving information about other cars, this data is added to the 

one about the current car and broadcasted at the next step (Figure 1). 
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 Figure 1. Information dissemination 

 

Using 802.11 for inter-vehicular communication raises a number of 

problems. Due to the limited bandwidth only information about a relevant area 

should be kept and disseminated.  This technology has a range of about 30-100 m 

outdoors, but it can be extended by adding a signal amplifier so a maximum 500 m 

range can be achieved.  

All the information a car has is also displayed to the driver. Figure 2 is a 

screenshot from a test run in Politehnica University Campus. The driver is 

presented with a static image of the map on the right (as a classic GPS navigator) 

and on the left with a dynamic image of the road formed from the information 

received from other cars in vicinity. This is why it can be considered a Dynamic 

GPS. 

 



 9 

 

Figure 2. Screen shot from a test run in Politehnica University 

Campus 

The application was developed in Java, using OpenGL for the graphical 

user interface. 

Each car has a local database containing information about other cars. 

Every record from this database is periodically updated or deleted if it gets old. All 

records have the following fields: Identification (used to uniquely identify the 

record corresponding to a vehicle), Position (the position of the vehicle – latitude 

& longitude), Speed (speed of the vehicle), Original Timestamp (the time this 

record was created) and Receive Timestamp (the time when the record was 

received). 

This database is shared by four components:  

- GPS module: each second the current car’s position is updated and 

the corresponding record is modified. 
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- Sending module: all the information a car has is periodically 

broadcasted.  

- Receiving module: listens to messages broadcasted by other cars 

and updates the information in the database. 

- GUI module: displays the map and the information in the database 

to the driver. 

Using the basic functionality provided by TrafficView, other applications 

have been developed in order to provide even more services to the driver. A query-

reply protocol (VITP) [8] for the vehicular ad-hoc network was implemented, 

allowing the driver to initiate queries, asking for specific information like the 

average speed on a road segment.  

The Vehicular Information Transfer Protocol (VITP) [8] is an application-

level protocol which uses the ability of the VANET to transport messages. It 

defines two types of messages that can be initiated by a car: POST and GET. The 

POST message is a packet that will be routed toward a destination and will be 

periodically broadcasted by the vehicles in that region. Its purpose is to inform 

drivers in an area about particular conditions present in that zone. The GET 

message is a packet that tries to find out some type of information about a 

destination area and that will return an answer to the vehicle that generated it. 

Routing a packet towards an area of interest raises a number of problems due to the 

fact that VANETs are not IP based networks. VITP tackles this problem by using a 

geographical routing based on streets’ topology and on distance.  

The first application presented in this paper uses the GET mechanism 

implemented by VITP to obtain the needed information about road conditions and 

traffic in order to dynamically compute the routes. The other one uses simple 

broadcasted messages for communication. 
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2.2. Traffic Simulator 

2.2.1. Overview 

When developing a vehicular application, a very complex and difficult step 

is the testing process. Accurate testing involves thousands of nodes, but performing 

actual experiments is burdensome even for just a few nodes. This is why a 

simulation tool is needed. For simulation of vehicular ad hoc networks two 

different aspects have to be taken into consideration: a network simulator, capable 

of simulating the behavior of a wireless network, and a vehicular traffic simulator, 

able to provide an accurate mobility model for the nodes of a VANET.  

Recent studies [16] have proven that the vehicular mobility model is very 

important, and in order to obtain relevant results, the two components should be 

integrated. If an inaccurate mobility model is used, like the popular random 

waypoint model (which may work for some mobile ad-hoc networks, but is 

definitely not an accurate representation of mobility in a VANET), false results can 

be obtained [16]. Integrating the two components is especially important for the 

situation when the vehicles’ mobility is influenced by the messages the nodes 

receive. For instance, if some nodes are to change their route as a reaction to 

messages they receive, we cannot use previously generated vehicular traffic traces. 

This is why we have chosen to develop our own simulation tool, 

comprising the 2 previously mentioned components: a microscopic traffic 

simulator, and a wireless communication model. The entire project was 

implemented in Java. 

 



 12 

2.2.2. Related Work 

Existing network simulators deal with issues like medium access control, 

signal strength, propagation delays.  

One of the most popular ones is NS-2, which is a discrete event simulator. 

It is probably the most widely used simulator in ad hoc networking. It provides 

support for TCP, routing, multicast, propagation models in wired or wireless 

networks and new protocol layers can also be added. It was developed by the 

“Information Sciences Institute” – University of Southern California [9]. 

Another interesting simulator is Jist/SWANS, developed by a team at 

Cornell University[10]. JiST is a high-performance discrete event simulation 

engine that runs over a standard Java virtual machine. SWANS is a scalable 

wireless network simulator built on top of the JiST platform. The authors claim 

that “SWANS can simulate networks that are one or two orders of magnitude 

larger than what is possible with GloMoSim and ns2, respectively, using the same 

amount of time and memory, and at the same level of detail.” 

However, a general-purpose wireless network simulator is by no means 

enough for an accurate simulation of a vehicular network. Nodes in a wireless 

network usually move according to the random-waypoint model. That means they 

have an origin and a destination and move towards the destination. But vehicles 

only move along roads and that is a very particular situation. Furthermore, real 

vehicles move according to very particular traffic models, due to the street 

topology, intersections, and, of course, drivers’ behavior. That takes us to the 

second very important aspect of a vehicular network simulator, which is simulating 

a mobility model as close as possible to real vehicular mobility. 

Vehicular traffic simulators can be classified in macroscopic and 

microscopic simulators. Macroscopic simulators deal with flows of vehicles, while 

microscopic simulators take into account the movement of each particular vehicle. 
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There are a lot of vehicular traffic simulators, but many of them are 

commercial. Of course, these simulators have not been designed especially for 

vehicular computing. They are primarily used to validate projects, like building a 

new road, or a new tram line, or for designing effective traffic signals. 

An example of a commercial vehicular traffic simulator is VISSIM [11]. It 

is a microscopic simulator and implements driver behavior models, like car-

following or lane changing, and, according to its producers, it is used in over 70 

countries.  

A very used simulator is CORSIM, developed by the McTrans Center, 

University of Florida, which can be purchased for about 500$ [12]. 

A very interesting simulator was written by a team at Northwestern 

University. It is based on a vehicular traffic model designed by them, called Street 

Random Waypoint (STRAW). Their simulator is implemented on top of 

JiST/SWANS, and it is free and open-source [13]. They have used the simulator in 

order to prove that studying routing protocols for a vehicular network without an 

accurate vehicular traffic model is wrong. To do that, they compared results 

obtained with the Random Waypoint model (which is a very inaccurate 

representation of a vehicular network) with results obtained with their complex 

model (STRAW). The experiments clearly indicate that using the Random 

Waypoint model will not produce accurate results for a vehicular network [16]. 

2.2.3. Our Simulator 

We have created an integrated simulator that combines the two features 

described earlier: an accurate vehicular mobility simulator, based on validated 

driver behavior models, and a wireless network simulator. It is a java based 

discrete event simulator, with an OpenGL interface.  
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2.2.3.1. Scenarios Generation 

The simulator uses real digital maps, TIGER files [14], offered by U.S. 

Census Bureau. In particular we use “.RT1” and “.RT2” files that give information 

about roads’ name and type, about the latitude and the longitude of the beginning 

point and the end point, but also the coordinates of some intermediary points. By 

parsing the information contained in these files, we create a Java object containing 

all the information. Furthermore, some improvements are also added to the map: 

roads are split in even smaller road segments by adding more intermediary points 

and roads with the same name that are connected are merged if they don’t form a 

loop.  

 Because in the TIGER files no information is given about traffic lights, 

after the map is created, for each cross traffic lights or just priority signs are 

assigned in a heuristic manner. If all roads in a cross are of the same type (major or 

secondary), a traffic light will be created in the cross. If roads have different types, 

major roads will be given priority signs and secondary roads will have to give 

priority. For very dense city scenarios it turned out to be better to put traffic lights 

in all intersections in order to give a chance to all cars entering to pass through the 

intersection because in this type of scenario cars coming on roads that have to give 

priority frequently got stuck in the intersection waiting for the others to pass and 

having no space to cross the intersection. 

All this information is stored in a Java object, called “Map”. The object will 

be serialized in a file, so that all these computations will not be performed again. 

We have designed a simulator module which allows the user to interactively create 

various traffic scenarios. This module is made of 2 sub-modules. 

 The first one will load an existing Map object (from a file) and add a list of 

entries and exits. Various routes are computed between each entry-exit pair. All 

this information will be stored in a Java object and serialized in a file - “Scenario 
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Map File”. This object is in fact a blank traffic scenario that will be later 

configured and loaded in the simulator. 

The next module will load this object from a “Scenario Map File” and 

provide the user with a GUI which can be used to add traffic information on the 

map. The user can specify flows of vehicles and the routes to follow between 

entries and exits. All the information is stored in another Java object and serialized 

in a file – “Final Scenario File”. This file contains all the information required by 

the simulator in order to run a specific scenario. In the following paragraphs, I give 

details about the GUI that can be used in order to create a traffic scenario. 

Figure 3 presents the first module that allows the user to select the desired 

TIGER files and to create a “Map” object and a “Scenario Map File”. 

 

Figure 3. First configuration window 

 

After creating a map from the TIGER files, the next step is to start the 

“Scenario designer” and to configure the desired model of traffic. First, the 
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scenario selection frame (Figure 4) allows the user to select a specific scenario and 

to configure it from the beginning or to load a previously configured scenario and 

to modify it. The specific scenarios are those which can be found in the “Scenario 

Map Files”. These files are placed in a specific directory and the scenario designer 

will look for all of them, and allow the user to choose which one to use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Scenario Designer- selection of the scenario 

After selecting a scenario, the configuration phase begins (Figure 5). The 

user is presented in the upper left corner with all the available entries. For each 
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entry, a list of exits towards which a route exists is displayed. The user can select a 

route and on the map in center the route will be displayed with red.  For each entry 

the user wants to use, the percent of vehicles/hour/lane has to be specified in the 

first text field from the right upper corner.  The distribution of driver personalities 

can be configured from the next text fields. Three types of personalities have been 

implemented: very calm, regular and aggressive. The default distribution implies 

equal values. 

 

 

Figure 5. Scenario Designer- scenario configuration 

 

From the total flow of vehicles starting from one entry point, the percent of 

traffic heading towards each exit should be specified.  For the traffic starting from 

one entry toward an exit, the percent following each route should also be specified. 

All these values should not necessary add up to 100. After the configuration is over, 

the corresponding values are added up and the percent of each one is computed. 
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Because the routes pre-calculated in the “Scenario Map File” may not be 

enough, the user can defined its own routes. To add a new route, and implicitly the 

corresponding entry and exit, the user has to first press the “Add a route” button.  

Then it can start selecting points from the map. The first should be the entry point. 

Next, only the crosses where the road changes should be selected. Finally the exit 

point should be selected. All these points will be saved and when the user will 

press the “Add  it” button, the route will be checked for validity and added to the 

scenario.  The user will then be able to configure the previously described 

parameters. 

The configured scenario can be saved under a name specified by the user. If 

no name is specified, the default name used is the name of the map.  

 

 

 Figure 6. UML diagram of the scenario designer 
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Figure 6 presents the class diagram for the GUI of the scenario designer 

The first method that is being called is the “main” method from the “Scenario 

Designer” class. This method will search through the “./maps/smf” directory for 

blank scenarios (“Scenario Map Files”). It loads all scenarios found and displays 

the “Scenario Selection” frame. From this frame the user can select a specific 

scenario to configure from the beginning or select a previously configured scenario 

and to change some parameters. After a blank scenario or a previously configured 

one has been selected, this structure is delivered as an input parameter for the 

“Scenario Configurator”. 

The “Scenario Configurator” is the container that manages all the 

configuration components. It encloses a list of all existing entries, a set of buttons 

that control the map (zoom in, zoom out), the buttons for saving or canceling the 

current configuration, the buttons that set the configuration mode (adding a route 

or setting an entry’s parameters) and an “Entry Exit Configurator” which is 

responsible with displaying all configuration parameters corresponding to the 

currently selected entry and with displaying the map. 

The “Entry Exit Configurator” displays all the exits to which a route exists 

from the currently selected entry and all the parameters associated with an entry:  

vehicle flow, driver types and percent of flow for each exit. For each pair entry-

exit, a list of routes is presented. For each route the percent of traffic that follows 

that route out of the total traffic between that entry and that exit has to be specified.  

The “Entry Exit Configurator” is also responsible with displaying the map. 

On this map, the current entry is shown as a white square and the current exit is 

displayed as a black square.  Each route between the two can be shown by a red 

line when the corresponding button is pressed. The map is also in charge with 

collecting the points provided by the user as coordinates for a new route.  
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Figure 7 presents the class diagram for the structures used by the scenario 

configurator. 

 

 
Figure 7. UML diagram of the scenario designer 

 
 

A blank scenario is described by the “Scenario Map” class. For each 

scenario the following are kept: the scenario’s name, the name of a picture that 

presents the map, the name of the map used, a list of driver types, a list of entries, a 

list of exits and a list of routes. Each route is described by an entry, an exit and a 
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list of segments that form the route. A “Scenario Map” object is given as an input 

parameter to the scenario designer. The designer produces as an output a 

“Scenario” object.  

The initial purpose of the “Scenario” object was to keep only information 

about the configured routes and to keep it in a manner easily accessible for the 

simulator. This was done by keeping a list of “Entry Scenarios” for all entries that 

were configured. Due to the fact that many times it is useful to take a previously 

completed scenario and just tune it, it proved necessary to keep also the list of all 

entries, exits and routes from the “Scenario Map”.  

An “Entry Scenario” stores all the parameters corresponding to an entry: 

the flow of vehicles entering the map through that point, the proportions of driver 

personalities, and, for each configured exit, an “Entry Exit Configuration”. 

The “Entry Exit Configuration” defines the traffic between an entry and an 

exit. It keeps all the routes used by the vehicles traveling between the two points, 

the percent of traffic distributed to each route and the percent of traffic coming 

towards that exit from the total traffic entering the current entry. 

 

2.2.3.2. Graphical User Interface 

 

For the developed simulator, a graphical user interface was created. By 

means of this interface the user can visualize the simulation scenario and as 

experience proved it, it helps identifying particular cases that otherwise would be 

much harder to detect. 

The GUI is made up of three components: a representation of the map and 

of the cars that are currently simulated, an area for controlling the simulation and 

an area where statistics are displayed (Figure 8). 
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Figure 8. Simulator’s graphical user interface. 

The map representation allows the user to move the visual field in any 

direction by using the arrows drawn on the map’s borders. The user can also select 

to zoom in or to zoom out by means of two buttons. The visual field can be directly 

moved to a specific area by pressing the mouse button in the upper left corner of 

the specific area, dragging the mouse and releasing the mouse button in the lower 

right area of the desired area. 

Cars are displayed as spheres and for each car two spheres are displayed. The 

simulator generates cars that move like real cars, simulating a continuous motion (a 

high time resolution).  On the other side, the simulated cars receive their position 

by means of the GPS device once a second (a lower resolution motion) This is why 
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two spheres are displayed: the blue one displays the car in the more discrete 

movement, as it positions itself once every second using the information received 

from the GPS device, while the red smaller sphere displays the real position of the 

car, as it is moved much more frequently by the simulator (simulating a continuous 

motion). 

The user can select a car from all the cars displayed and, by doing this, some 

information about that car will be shown. The selection of a car is done by clicking 

twice on the map. The first click will zoom in closer to the area around the car, for 

better accuracy, and the second will select the car.  

The car that has been selected is drawn as a white sphere and all the cars it 

knows about will be displayed as purple spheres. This is very useful when the user 

wants to visualize exactly how much information a car has about other traffic 

participants. Also, on the right side of the map, information about that car’s 

position is displayed. 

Once a car has been selected, the user can choose to switch to a different view. 

By pressing the “SetDriverView”, the user can see the image that would be 

displayed to the driver in the selected car (Figure 9). This image is constructed 

from the information a car has about other cars around it. 

This perspective is particularly interesting because it can provide the driver 

with traffic information that can be of real help in situation characterized by low 

visibility due to weather conditions or during night time driving. 

In this perspective the user can also see the traffic lights for the surrounding 

area. This can be done for the simulator because this information is available 

directly from the simulator’s engine. In real traffic conditions, such information 

would not be available unless traffic lights were equipped with wireless 

communication devices and would exchange information with cars approaching 

the intersection. 
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Figure 9. Simulator’s “DriverView” perspective 

 

In this view, the button that was used to change to the “DriverView” 

perspective is now used to change back to the map representation perspective. 

In the upper right corner the user is displayed some information about the 

simulation development: the time elapsed from the beginning of the simulation, the 

time that has been simulated, the number of discrete time periods that have been 

simulated and the current number of events awaiting to be simulated. 

The user has full control over the simulation. He can choose to execute just 

one time interval by pressing the “NextStep” button or it can choose to 

continuously execute all events by pressing the “Run” button. After the “Run” 
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button has been pressed, the user can pause the simulation by pressing the “Pause” 

button.  

The user can also choose a car by its id. Under the “selectCar” button there 

is a field where the id can be typed and if a car exists with that id, when the 

“selectCar” button is pressed, that car will be selected and information about it will 

be presented in the same way as when selected by a mouse click. 

Although the graphical user interface is very useful for observation about 

simulation development that would be otherwise very difficult to make, it is very 

consuming in terms of resources. This is why the “SuspendGUI” button was 

introduced. If the user wants to let the simulation advance faster for a period, by 

means of this button it can interrupt the display and allow the simulation to 

proceed more rapidly.  

Some times only the mobility of cars may be of interest. In these situations, 

simulating the communication induces an unnecessary overhead so the “Disable 

Communication” button allows the user to skip the simulation of inter vehicular 

communication. 

Figure 10 presents the UML class diagram for the graphical user interface. 

The “Display” class describes the container for all the other components. It 

handles the creation of all the other panels and it handles the exchange between the 

map perspective and the driver perspective.    

The “Controls” Java object is the one that manages the interaction between 

the GUI and the simulator’s engine. It contains all the buttons that control the 

simulation flow (Run, Pause, NextStep, SuspenGUI, DisabeleCommunication) and 

also the buttons that control the map (ZoomIn, ZoomOut ,SetCurrentCar). 
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The “Statistics” panel handles the presentation of data about the simulation 

progress. This data is constantly updated by the simulator’s engine at every time 

period. 

 

Figure 10 UML class diagram for the simulator’s graphical user 

interface 

Both the “MapView” and the “DriverView” contain an OpenGL canvas on 

which the images are drawn.  The “MapView” object computes in the beginning 

the representation of the current map and for every redisplay it just repaints this 
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image. For every redisplay, each car’s position is recomputed and each traffic 

light’s state is inspected before repainting. The “DriverView” displays only the 

road on which the current car is positioned and the roads with which this road has 

crosses. 
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3. Dynamic Route Computation Using a Greedy Approach  

Existing implementations for a dynamic route planner rely only on the 

information received from previously deployed infrastructure (sensors in the road 

and cameras at intersections). They are not able to offer a complete solution 

because they can only provide information about the roads that are being 

monitored.  

This project presents a solution based on the fact that cars are everywhere 

on roads and that information about road conditions can be exchanged between 

drivers. A car begins by statically computing a route towards its destination. Then 

the car begins its journey and using the “query-reply mechanism” described earlier 

in this paper, it periodically performs queries about traffic conditions on the roads 

it will travel. If accidents, jams or other traffic disturbances are reported, a detour 

will be computed based on this new information.  

This chapter will present first the method used for finding a static route and 

then the algorithm used to dynamically determine information about traffic 

conditions on the roads ahead. 

3.1. Map Splitting 

Searching for a route is in essence a classic shortest path problem. Often 

classic algorithms are used to solve this problem, like Dijkstra or A*. But when 

these algorithms are applied to the vast road network they are extremely inefficient 

in terms of computation because many irrelevant zones are analyzed. Moreover the 

result is usually not the best solution for human drivers because people prefer 

traveling on major roads, while the shortest path most often comprises many 

secondary roads.  
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One efficient solution to this problem [2] uses some observations about the 

road network and the behavior of drivers in order to reduce the area searched just 

to areas of particular interest. 

First, by dividing the roads into two categories, large roads (main roads and 

highways) and small roads (secondary roads), any map becomes naturally 

partitioned by the big roads in many smaller areas. These smaller areas contain 

secondary roads and are generally surrounded by large roads. In Figure 11, 

Bucharest’s map illustrates this principle. 

Second, human drivers’ behavior studies [4] have proven that we prefer 

traveling on major roads. 

The algorithm used to calculate a route is based on the above statements.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Bucharest City Map - main roads drawn with thick yellow 

lines partition the map in many small areas. 
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First, the big map is split in many smaller areas. The division process 

begins by identifying the major roads.  For each major road, a digit is assigned in 

an area code. Each secondary road, more exactly each point of a secondary road 

will have an area code. The digits in the area code will indicate the relative 

position of the secondary road compared to a direction assigned to every main road. 

For example, if a secondary road is in the right of main road j, then the digit j in the 

secondary roads’ code will be 0, and if in the left of the main road, the digit will be 

1.  

 

Figure 12. Two main roads dividing a map in four smaller areas 

 

 The process of forming the area codes begins by initializing every digit 

with “-1”. Next, major road are assigned arbitrary a direction. Then every major 

road begins to mark with “0” on its corresponding position in the area code the 

road which cross it in the right and with “1” the ones which cross it in the left.  

This value is then propagated one secondary road point at a time, until a point that 

has already been assigned a value for that digit is encountered. When the division 
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process ends, each point should have an area code associated, code formed of “0”s 

and “1”s. Main roads will also have a similar code, only that on the position 

corresponding to them they will have “2”, marking that they are border roads. 

Figure 12 shows how 2 main roads split a map in 4 areas. 

This map partitioning considerably reduces the searched area when a route 

needs to be determined between a source and a destination placed in different 

zones. First, a route is determined in the area of the source, from the source to the 

closest main road. The same is done in the destination’s area, between the 

destination and the closest main road. Last, a route is searched only using the main 

roads network between the points previously found. This approach reduces 

significantly the area being searched and also provides a route suitable for human 

drivers because it mainly contains major roads. 

During the map partitioning process, some particular cases appeared: 

 - generally major roads surrounding one area form a grid for every node in 

the secondary roads. For routing inside an area, major roads are not absolutely 

necessary (Figure 13.A)  

 - in some cases major roads surrounding secondary roads form a grid in 

which not every node is connected to the others. In this case, for routing inside this 

area, main roads are required (Figure 13.B). 

 -not all maps are perfectly divided by major roads. Two different main 

roads can be connected and can form together just one longer road (Figure 13.C) or 

two secondary roads, each belonging to a different area can be connected. This is 

why after the process of assigning an area code is finished, a merging process takes 

place. This one looks for such abnormalities and merges such areas (Figure 13.D). 
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Figure 13. A-All secondary roads in a sub-network are connected; 

B-Not all secondary roads in a sub-network are connected; 

C- A split before merging 

D-The same split after merging 

After the splitting process ends, the results are saved in a file so that they 

can easily be loaded when needed.  

Figure 14 presents the UML class diagram for the map construction and 

splitting.  

The map contains a list of all roads. For each road details like road’s name, 

type, lane number and allowed driving direction are kept. Each road has a list of 

consecutive points that form the road and a list of crosses. 

For a road, crosses keep track of the points in which it intersects with other 

road, the indexes of those roads and the points on those roads where they intersect. 

 A point is described by its latitude, longitude and distance to the beginning 

of the road. For performance purposes, the concept of PeanoKey was introduced. A 

PeanoKey is in fact a number formed by interleaving the digits of the latitude with 

the digits of the longitude values. In this way a unique number is formed that 

describes a point and by keeping a sorted list of PeanoKeys searching for a point 

becomes much faster. 
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Figure 14. Map construction and splitting process 

Before starting the splitting process, to each point an “AreaCode” object is 

assigned. The “AreaCode” has two components. The first is a list of bytes, one for 

each major road, that specifies the position of this point compared to that major 

road (left / right) and it is used in the first step of the splitting process when values 

are propagated from point to point. The other one is a “MajorRoadArea” object 
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that is used in the merging process. After each point’s area code was set, a list of 

distinct “MajorRoadAreas” is formed, each point having a reference to the object 

corresponding to its area. This is extremely useful in the merging process, because 

when two areas have to be merged is not necessary to find all points in the area that 

is being deleted and change their values. It is enough to change the 

“MajorRoadArea” corresponding to the deleted area and all points will have the 

new information. 

The “RoadAreaUtils” class is the one that manages the splitting process. It 

starts by making a list of all major roads and assigning each point an empty area 

code with a digit for every main road. Then, for every cross on a main road, it 

computes which point on the crossing road is on the left and which is on the right. 

It creates a list of “Mark” objects for all points found on secondary roads, next to 

main roads. Then, until no “Marks” will be added, it analyses the list of “Marks” 

objects and completes the corresponding point’s code, adding a “Mark” object for 

every neighbor that was not yet visited. After all points are assigned an area code 

the merging process begins. 

The static “Globals” class is the one that keeps a reference to the “Map” 

object so that it can be easily accessed from all other classes. 

3.2. Best route computation 

Roads form a directed and weighted network G = (N, A) with a set of nodes 

N and a set of arcs A. Nodes are generally road crosses but can also be just points 

on a road. The arcs are streets, more exactly road segments between two crosses. 

Each arc (i, j) from A has a weight given by an approximation of the travel time 

between i and j. The direction of the arc corresponds to the allowed driving 

direction of the corresponding road. 

In order to find a route between a source and a destination, the algorithm 

first compares the area codes of the two points. If they belong to the same area, a 
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road between the two is searched. If they belong to different areas, the algorithm 

first searches for a route between the source and a main road, then a route between 

the destination and a main road and finally for a route on main roads between the 

points previously computed.  The algorithm that is used for searching these routes 

is Dijkstra’s shortest path algorithm with a special cost function. 

The cost function used for computing the path is an approximation of the 

travel time. This approximation of the travel time between two points is considered 

to be the sum of the approximated values obtained for each segment of the route. A 

segment is considered to be the area between two points of the same road in which 

driving conditions don’t change. Generally this is the area between two crosses. 

The value computed for each segment is based on the road’s type, number of lanes 

and maximum speed allowed. The formula used for computing this value is: 

[ ]
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The “delayPerLane” factor is a way to add a delay that might appear on a 

road with fewer lanes compared with another with more lanes.  A three lane 

primary road or highway is considered to be the best option. Fewer lanes will 

increase the travel time while more lanes will decrease it. 

The statically computed route is kept by each car as a succession of route 

segments. A route segment is in fact a section of a road between two crosses. 

Using this list and an index to the segment on which the car is currently positioned, 

the car sends inquiries about the next few segments it will travel on. 

 The first type of inquiry was intended to gather the speed of cars traveling 

on the road segments ahead and maybe information about particular road 

conditions like ice or accidents. When this information returned to the car that 

initiated the query, the average speed would be computed and if it were under a 

specific limit or if a particular road condition were reported, the car would then 
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compute a detour. But this type of information proved not to be suitable for a city 

scenario due to the fact that in a city the cars that reply to an inquiry may be 

queuing at a traffic light and have “zero” speed. Reporting this speed would 

mislead the inquiring car to consider a jam on that road and avoid it, when in fact, 

it is not the case. This is why a new reply type was considered. 

It was assumed that a car can approximate the time needed to pass over a 

road segment and that waiting just one red light period at the traffic light in the end 

of that segment is acceptable. This is why cars will try to find how long it took 

other cars to travel along the road segment of interest. 

 Each car will keep a record of the time when it started traveling on a new 

road segment. When a query is made, only cars at the end of the destination 

segment will reply and will give as information the time it took them to travel that 

segment. 

 When the reply reaches the initiator of the query, it performs an 

approximation of the time required for traveling on that road segment plus an 

approximation of the time required to wait for a red light at the traffic light in the 

end of the segment. If the average value reported is bigger than that approximation, 

it computes a detour. 

The formula used for computing the maximum time allowed for traveling a 

road segment is: 

 

The first fraction is an approximation of the time required to travel a road 

segment depending on the maximum speed allowed on that type of road and on the 

length of that segment. Because in a city scenario cars don’t generally travel at a 
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constant speed, often breaking and then accelerating, assuming a car travels 

constantly at the maximum speed allowed is not realistic. This is why an 

estimation of 2/3 of the maximum speed allowed was used. 

The duration of a red light is approximated by the maximum amount of 

time required for all other segments entering the intersection to have a green light. 

Depending on the other roads’ type, some might have a shorter or greater period of 

green light than others. The average between the different green light periods was 

used, which means 35 seconds. 

For a highway scenario this formula had to be modified because on a 

highway no traffic lights exist.  This is why only the approximation of the time 

required to travel on that road segment with a speed of 2/3 from the maximum 

speed allowed was used. 

3.3. New Route Computation  

When a car receives a reply that signals a very long travel time on a street 

segment, a detour from the original route will be computed. The new route will 

have to go around the road segment about which the car now knows it is jammed.  

Assuming that the initial route was an optimal one, there is no sense in 

computing the whole route towards the destination again. This is why a new route 

will just try to go around the problem segment and to reach the route previously 

computed in an area after the avoided segment. This detour will be computed using 

Dijkstra’s shortest path algorithm with distance as a cost function. 

Figure 15 presents the UML class diagram for the dynamic route 

computation process. 

A real car is described by the “Car Instance” Java object. Each car is 

uniquely identified by an id and it keeps track of its position by means of an index 

of the current road and current point. The route followed by a car is described by a 
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list of route segments and an index pointing to the current route segment. The car 

has a driver personality associated that is used by the mobility model. For the 

routing protocol, cars keep a record of the time when they entered the latest road 

segment and have a random moment during the query period when they send 

inquiries. 

The “RouteComputingUtils” class contains all the functions used in 

computing static routes. The basic algorithm used was Dijkstra’s shortest path 

algorithm with variations for the cost function and the area searched. 

 

 Figure 15. UML class diagram for the route computing process 

 



 39 

When a car receives a reply, a “QueryResponse” object is generated. This 

object analyzes the received message and validates it. If the message is valid, an 

approximation of the maximum time allowed for a car to travel the segment in 

question is done. If the average time reported by other cars is bigger than the 

computed value, a detour is computed. If a detour is found, the car’s route is then 

changed. 
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4. Dynamic Route Computation Using a Hybrid System  

Using queries to gather information about road conditions is a good method 

to dynamically route a car around problematic areas when a car already has a route 

that is considered optimal. As the results presented later in this paper will show, 

this method gives good results when only a percent of all cars use this type of 

routing. This is due to the fact that the information gathered covers just a small 

area of interest, not taking into consideration the big picture. When a large 

percentage of vehicles traveling on a road determine in the same time a condition 

that makes them change their route, they all move on another road, many times 

creating a jam on the new road. 

This is why, in order to create a dynamical routing protocol that gives even 

better results, more information about road conditions is needed. If all cars start to 

inquire at the same time about all streets around them, trying to gather as much 

information as possible before making a decision, a lot of communication is 

produced.  

The solution presented in this chapter uses a hybrid system formed by both 

infrastructure nodes and vehicles.  

This solution assumes that in each intersection a fixed node can be installed, 

capable of communicating with cars approaching the intersection through wireless 

communication and all fixed nodes are connected together with a separate high 

speed network.  

Big cities around the world have already installed in intersections adaptive 

traffic lights that receive information from loop detectors or cameras that send 

information to a control center where decisions are made about how to control 

traffic. In these conditions installing a wireless communication device with 

processing power and assuring a connection between these points is not a very 

burdensome operation. 
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When a car starts on a new road segment, it sends a message to the fixed 

node ahead, communicating its destination. Having access to a database containing 

information about traffic conditions on all the roads, the fixed node can compute 

the shortest path towards that destination and reply to the car that interrogated it 

with the next segment from the found route. This process repeats itself for every 

road segment because the vehicle flow is highly dynamic and conditions change 

very rapidly, so it is better to interrogate at every step the fixed node and always 

get the best route at that particular time. 

Initially it was intended for the fixed nodes to keep information about how 

long it took for the last cars traveling a segment to pass on that segment. Each car 

leaving a road segment would communicate to the fixed node the time it took it to 

travel that segment and the average of the times reported by the last ten cars 

leaving that segment would be communicated to other fixed nodes so that they can 

used it in the routing process. 

This method did not produce good results due to the fact that the cars that 

report their values can be the first in a long queue. Because they can be the first 

that entered that segment, the times reported by them will be small. This will trick 

the fixed nodes to route even more cars on that segment, only contributing to the 

increase of the queue. Until the cars in the middle or in the end of the queue reach 

the intersection and report big waiting times, many more cars would have been 

routed to that segment creating an even bigger jam. 

Due to this fact, it became clear that the number of cars already on a 

segment has to be taken into consideration when computing an approximation of 

the travel time for a particular road segment.  Their presence induces a delay that 

can be computed based on how fast the intersection at the end of the segment can 

let them pass on to another segment. 
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For every road segment entering an intersection the following values were 

computed: 

-the capacity of that segment is the number of cars entering the intersection 

from that segment that can pass the intersection in an hour; knowing that the 

mobility model allows 0.5 cars per lane to pass the intersection per second and 

knowing exactly the traffic light’s cycle length and the green period for that 

segment, the number of cars that can pass the intersection per hour for a road 

segment is: 
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 -the approximateTravelTime required to pass a road segment if no other 

cars would be on that segment:  

 

 At regular time intervals, a fixed node counts the cars on the segments 

entering its corresponding intersection and computes for each segment the time in 

which a car entering that moment would have to wait to pass the segment and enter 

the intersection: 

 

 

This value is then communicated to all other fixed nodes so they can use it 

in the process of finding a route.  
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Figure 16. UML class diagram for the hybrid route computing mechanism 

 

The “DelayRecord” class is the one that keeps the information regarding 

the current traffic conditions associated with a road segment. For each segment the 

following data is kept: a description of that segment’s position, that segment’s 

capacity and the approximated travel time when no cars are on that segment. The 
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segment’s delay is recomputed periodically as the sum of the approximated travel 

time and the time required for all the cars already on that segment to pass the 

intersection. 

 A fixed node is described by an “InfrastructrureNode” Java object.  Each 

node contains a reference to the corresponding intersection and references to the 

delay records corresponding to the road segments entering the intersection. It also 

contains methods for answering a routing request, for computing the shortest route 

based on the delay information for all segments and for updating the delay 

information for the road segments entering the intersection. 

 Cars are described by the “Car Instance” class. They have a source, a 

destination and a list of segments they traveled on. The last in this list is generally 

the current segment or, when an answer has been received, the next segment. 

Because a car doesn’t know from the start on where it will travel, each time a new 

segment is added to its route some parameters corresponding to the mobility model 

have to be computed in order to set the way in with the car will transit from one 

segment to another.   

 When a car enters a new road segment it will generate a routing request to 

the fixed node at the end of the street periodically, until an answer is received. 

After an answer is received, no more messages will be generated until the car 

moves to another segment. 

When an answer is received, a “RoutingResponse” object is generated that 

has a reference to the car object and the message. This object contains the methods 

that parse the reply, check it for correctness and if found to correspond, the 

segment indicated in the response is added to the car’s route. 
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5. Results and Discussions 

5.1. Testing Conditions 

All tests have been performed on computers with a 2.8GHz processor, with 

1,24GB of RAM, running WindowsXp. 

For the first algorithm two scenarios were created: a city center scenario 

and a highway scenario. The percentage of cars using a simple shortest path 

algorithm to compute their route and the percentage of how many use the 

algorithm described at 4.2 were varied. Another factor that was studied was the 

percentage of cars using the greedy mechanism compared to the ones that just 

followed their route. Last, the distance to which an interrogation should be send 

was varied. 

The first scenario was an urban city scenario using a small part of 

Manhattan’s map. This scenario had 17 Km of roads, 32 entries and 32 exits were 

defined. On each entry a flow/lane/hour of 200 vehicles was induced for 10 

minutes. Then all cars were left to reach their destination. For cars entering the 

map from one point, destinations were equally assigned to all exits that were more 

than 250m away (Figure 17A).   

In this scenario the wireless range of the vehicles was set at 200m and each 

communicating vehicle generated a new query at a 30 second period.  This proved 

to be a sufficient query period for the city scenario due to the following factors:  

-all segments forming a route were very short (generally hundreds of 

meters between two road crosses) so the answers would travel back very quickly.  

-all intersections had traffic lights, and due to the high density of cars, a car 

would generally catch a red period at a cross. The red light period was around of 

35 seconds, which is more than enough time to get even more than one reply. 
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The second scenario was a highway scenario using a part of New Jersey 

Turnpike’s map. This scenario had 87 Km of roads, 24 entries and 24 exits. On 

each entry a flow/lane/hour of 400 vehicles was induced for 10 minutes. Then all 

cars were left to reach their destination. For cars entering the map from one point, 

destinations were equally assigned to all exits that were more than 1Km away 

(Figure 17 B).  

   Figure 17. Test Scenarios 

After completing their trip, each car added an entry to a log, containing its 

id, its origin, its destination, the total travel time, the distance traveled, and the 

routing type used. After all cars finished, this log was analyzed and the average 

time and distance were computed. 
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In this scenario the wireless range of the vehicles was set at 500m. Due to 

the high speeds cars travel on a highway and the lack of traffic lights, the period of 

30 seconds for sending a query was too big. The retransmitting period was set to 

10 seconds for this scenario and every time a car entered a new segment, a query 

would be automatically generated. 

For the hybrid mechanism two scenarios were used: first a simple scenario 

made of 4 roads (Figure 17 C) and second the city scenario presented above. 

5.2. Results Obtained 

The map splitting process was tested on different maps with different sizes. 

As main roads two types of roads were considered: interstate/state highways or 

both highways and primary roads. The times obtained for running the splitting 

algorithm itself are presented in table 1. 

 

Map Name Total 
length 
(Km) 

Number of 
Roads 

Number of 
major roads 

Split process 
duration (ms) 

DowntownNY 17 23 3 91 

4 811 NJTurnpike 196 50 

5 861 

60 465850 NYState 1402 2373 

64 484147 

20 89639 NJState 4670 10400 

41 762606 

 

Table 1. The duration of the map splitting algorithm 
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From these values it can be deduced that the time required for the splitting 

process is directly proportional to the total length of the map roads but the number 

of major roads is the factor that influences the most the duration of this process. 

Table 2 presents the average times required for two algorithms to find a 

route between two points. Four distance intervals were measured. For each 

distance interval, 100 pairs (source-destination) of points were generated.  Each 

algorithm was applied for these values. Table 3 presents the total distance 

produced by each algorithm. 

 The first algorithm (Dijkstra) computes the shortest path using the 

approximated travel time as a cost. The second, presented in 3.2 (will be referred 

from now on as “best route algorithm”), computes the shortest path from the 

source and from the destination to a main road and then the shortest path between 

these two points on main roads. It also uses the approximated time as a cost 

function.  

 
0 to 10 Km  

 
10 to 20 Km 

 
20 to 40 Km 

 
40 to 100 Km  

 
Average time 
(ms) 

 
Average time 
(ms) 

 
Average time 
(ms) 

 
Average time 
(ms) 

Dijkstra 
Shortest Path 
Algorithm 

 
 

378 

 
 

1139 

 
 

1864 

 
 

3279 

One route 
using mainly 
primary roads 

 
 

267 

 
 

566 

 
 

817 

 
 

1342 

 

Table 2. Average times required for two algorithms to find a route 

between two points 
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These values prove that the algorithm presented in 4.2 is much faster than 

Dijkstra’s shortest path algorithm. Because for Dijkstra’s algorithm the cost 

function was an estimation of the travel time, estimation that is powerfully 

influenced by the road type, even this algorithm gives a solution that uses primarily 

major roads. 

 

 
0 to 10 Km  
 

 
10 to 20 Km 

 
20 to 40 Km 

 
40 to 100 Km  

 
Total distance 
(km) 

 

 
Total distance 
(km)  

 
Total distance 
(km) 

 
Total distance 
(km) 

Dijkstra 
Shortest Path 
Algorithm 

 
 

566.1 

 
 

1510.6 

 
 

2875.9 

 
 

4280.5 

One route 
using mainly 
primary roads 

 
 

622.1 

 
 

1479.9 

 
 

2889.3 
 

 
 

4263.1 

 

Table3. Total distances produced by the  two algorithms when finding 

a route between two points. 

 

The other one, using the same cost function but having a smaller search 

area, is much faster and produces a solution that is very close to the one obtained 

from the first algorithm. This can be concluded by analyzing the total distance 

produced by both algorithms. 

Chart 1 presents the average travel times obtained by cars in the urban 

scenario when traveling on a static route computed with one of the two algorithms 

(shortest path and the best route algorithm). Multiple measures were made, varying 

the proportion in which each algorithm is used for the computation of the initial 

static route. 
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From these values it can be observed that using only one type of static route 

computation produces the longest journeys. This is because all cars go on the same 

streets, creating a very high density of cars in those areas. Between the two 

algorithms, when used just one or the other, the shortest path algorithm produces 

longer travel times than the best route algorithm. This can be explained by the fact 

that the shortest path algorithm uses mainly small streets, while the best route 

algorithm uses predominantly major roads that have a bigger capacity, have longer 

green periods in intersections and even greater speeds allowed, although this last 

criterion does not apply in cases of jams. 

 

  

Chart1. Average journey times (ms) in city scenario created by 

injecting 10 minutes a flow of 200 vehicles/lane/second on each of the 32 

entries. 
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The best average travel times are obtained when a combination of the two 

algorithms is used. The data in the chart above presents as the best combination a 

60% usage of the best route algorithm and a 40% percent usage of the shortest path 

algorithm. Again this can be explained by the fact that the roads used by the first 

have greater capacity.  

For the same scenario, the vehicle flow was reduced to 150 and 100 

vehicles/hour/lane for each entry and the same measurements were done. The 

results are presented in Chart 2 and Chart 3.  

 

Char2. Average journey times (ms) in city scenario created by 

injecting 10 minutes a flow of 150 vehicles/lane/second on each of the 32 

entries. 
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Chart3. Average journey times (ms) in city scenario created by 

injecting 10 minutes a flow of 100 vehicles/lane/second on each of the 32 

entries. 

 

The results obtained from these three simulations prove that the average 

travel time increases with the increase of vehicle flow. For the scenario with the 

smallest vehicle flow, the average travel times obtained by using only a static route 

computed with the shortest path algorithm is smaller than the average travel time 

obtained when using only a static route computed with the best route algorithm. 

This can be explained by the fact that in a scenario where traffic flow is light, cars 

travel easily on all types of roads and the ones that have a shorter distance to travel 

will be the ones that will get there faster. 
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This city scenario was used for testing the hybrid routing system. The 

average travel times obtained for different vehicle flows are presented in table 4.  

 

Vehicle flow per entry 

(vehicle/lane/hour) 

 

100 

 

 

150 

 

200 

Average travel time 

for hybrid road planning 

system 

 
399718 

 

 
539130 

 

 
725827 

 

Table 4. Average travel times for cars in the city scenario using the 

hybrid routing system. 

Compared to the values obtained in the cases when only a static route was 

used, these values are just slightly bigger than the smallest values obtained in each 

simulation. The smallest values belong to the cars that follow a shortest path in a 

scenario where the majority of the cars follow a best route path. 

Because the values produced by the hybrid routing system apply to all 

traffic participants, not to a small fraction of traffic participants, this system can be 

considered better than static routing. 

Compared to the times when only a type of static routing is used, the hybrid 

routing systems produces average travel times that are 20-30% percent smaller. 

Next, for the greedy approach, the city scenario with a flow of 200 

vehicles/lane/hour was used. The percent of cars that uses the dynamic routing 

mechanism was varied and the number of road segments ahead was also varied. 
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 Table 5 presents the average travel times obtained by cars in the city 

scenario when 60% of them compute their initial route with the best route 

algorithm and 33% from all cars communicate in order to determine road 

conditions and find a detour if needed.  

The first thing that can be observed from these values is that the best results 

are given by interrogating road conditions just one segment away. This can be 

explained by the fact that when avoiding an area further away, the detour might 

prove to be longer and may include narrow streets and more intersections. In many 

cases until the cars reach that segment the jam might have been softened. When 

interrogating just one segment away, imminent jams are avoided and resulted 

detours shorter, containing less traffic lights.  

 

Number of road 

segments ahead to be 

interrogated 

by the vehicles which 

use queries 

 
Road computation 

Process 

 

 

1 

 

 

2 

 

 

3 

Average travel time for 

cars traveling a static shortest 

path route (ms) 

 
619256 

 
629864 
 

 
644188 
 

Average travel time for 

cars traveling a shortest path 

route and communicating (ms) 

 
567024 

 
584314 
 

 
655123 
 

Average travel time for 

cars traveling a static best path 

route  (ms) 

 
697966 

 
713101 

 
745059 

Average travel time for 

cars traveling a best path route 

and communicating (ms) 

 
667185 
 

 
672849 

 
706163 

 

Table 5. Average travel times for cars in the city scenario where 60% 

compute their initial route with the best route algorithm and 33 % of all cars 

communicate in order to determine road conditions. 
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Another thing that can be observed is the fact that even the cars following 

the static route are influenced by route modifications of other cars. The further the 

area that has to be avoided, the more the cars leaving major roads stay on 

secondary roads, increasing the density of cars on these roads and producing longer 

travel times. 

Table 6 presents the average travel times for cars in the city scenario where 

60% compute their initial route with the best route algorithm, inquiring about 1 

road segment away on their route. The percent of cars that use communication in 

order to determine road information is varied. 

 

Percent of cars 

communicating in order to 

determine road information 

 
Road computation 

Process 

 

 

10% 

 

 

 

 

33% 

 

 

 

 

60% 

 

 

 

 

80% 

 

 

Average travel time for 

cars traveling a static shortest 

path route (ms) 

 
662462 

 
619256 

 
672710 

 

 
726023 

 

Average travel time for 

cars traveling a shortest path 

route and communicating (ms) 

 
564055 

 

 
567024 
 

 
682189 

 

 
696656 

 

Average travel time for 

cars traveling a static best path 

route  (ms) 

 
754932 

 

 
697966 

 
761089 

 

 
757512 

 

Average travel time for 

cars traveling a best path route 

and communicating (ms) 

 
642014 

 

 
667185 

 
745837 

 

 
804730 

 

 

 

Table 6. Average travel times for cars in the city scenario where 60% 

compute their initial route with the best route algorithm, inquiring about 1 

road segment away on their route. 
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The best overall values are obtained when only one third of all cars use the 

dynamic routing protocol. When only a few (10%) use this protocol, their values 

are also small, but the average times of the remaining cars are still big. The greater 

the percent of cars using this protocol the greater the average times become.  

An interesting thing that can be observed is that the travel times for the cars 

using just a static best route algorithm become smaller than the times of the cars 

using the dynamic routing protocol when the last are 80%. This may be due to the 

fact that when a big percent of cars determine bad road conditions and all decide in 

the same time to change their route, they all move in the same time to secondary 

roads, creating even bigger jams on this smaller road and freeing the bigger road. 

This aspect is also reflected in the increase in the times obtained by cars using a 

static shortest path route and traveling mainly on smaller roads. 

Table 7 presents the average travel times for cars in the city scenario where 

33% of the cars communicate in order to determine road information, inquiring 

about 1 road segment away on their route. The percent of cars using an initial static 

route computed with the best route algorithm was varied. 

When just 40% used best route computation, the average travel times 

obtained by cars using dynamic routing were not very different from the ones 

obtained by the cars using a static route.  This may be due to the fact that the 

percent of cars using primary road, which are preferred by the best route algorithm, 

was small enough not to produce jams. 

When all vehicles used best route algorithm for computing the static route, 

the average times of the ones that did not use the dynamic routing mechanism 

decreased just slightly compared to the situation when none used the routing 

mechanism. The average travel times of the ones that used the dynamic routing 

mechanism were not significantly smaller either.  
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Percent of cars using an 

initial route computed with the 

best route algorithm 

 
Road computation 

Process 

 

 

 

40% 

 

 

 

 

 

60% 

 

 

 

 

 

100% 

 

 

Average travel time for cars 

traveling a static shortest path route 

(ms) 

 
694365 

 

 
619256 

 

 
NA 

 

Average travel time for cars 

traveling a shortest path route and 

communicating (ms) 

 
666298 

 

 
567024 

 

NA 
 

Average travel time for cars 

traveling a static best path route  

(ms) 

 
761837 

 

 
697966 

 

 
882076 

 

Average travel time for cars 

traveling a best path route and 

communicating (ms) 

 
762145 

 

 
667185 

 

 
842379 

 

 

 

Table 7. Average travel times for cars in the city scenario where33 % 

of all cars communicate in order to determine road conditions, inquiring 

about 1 road segment in front. 

 

 

The next studied environment was a highway scenario. Out of New 

Jersey’s state map a small area around NJ Turnpike highway was isolated, with a 

total of 82 Km of roads. The tests performed on this map have proven that the 
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highway had enough capacity to accommodate all generated cars without creating 

jams, so no concluding results were obtained just from the variation of the 

parameters described in the previous experiment.  

 

 

Chart4. Average journey times (ms) in a highway scenario created by 

injecting for 10 minutes a flow of 400 vehicles/lane/hour on each of the 24 

entries. 

 

Chart 4 presents the average travel times obtained by cars in the highway 

scenario when traveling on a static route computed with one of the two algorithms 

(shortest path and the best route algorithm). Multiple measurements were made, 

Average travel times for cars following a static route in the highway scenario
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varying the proportion in which each algorithm is used for the computation of the 

initial static route. 

For the cars using the shortest path algorithm, the pattern from the city 

scenario was preserved. The average travel times decreased along with the 

decrease of the number of cars using this algorithm. This was due to the fact that 

secondary roads which were mainly used by this algorithm had the same type of 

limitations the secondary roads in city scenario (traffic lights, smaller capacity). 

For the cars using the best route algorithm, no significant variations were 

recorded. I attribute this to the fact that the highway, which was preferred by this 

algorithm, had enough capacity to accommodate the traffic and jams were not 

created. 

In order to produce more interesting results, for this scenario a number of 

dummy cars were created that stopped in the middle of the highway, in order to 

induce congestions. 

During this scenario the following observations were made: 

- communicating cars detected the jam and computed an avoidance route. 

- the detour involved leaving the highway and using secondary roads for 

the avoidance route.  

-when these cars tried to enter back on the highway, jams were created at 

the entrance point. 

The mobility model used by the simulator describes intersections by means of 

traffic lights or priority signs. No information is included about special access 

lanes to the highway. Access to the highway could be made by means of traffic 

lights or priority signs. 
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Figure 18. Highway jam produced due to the fact that cars on secondary 

roads wait for the cars on the highway to pass, giving them priority 

Simulating traffic lights on the highway at each crossroad with a secondary 

road would mean reducing the scenario to the city scenario. Having only priority 

signs in these crosses and allowing cars on the highway to travel freely creates 

jams at the access points on the highway (Figure 18). The jams are produced 

because the entering cars see the cars traveling on the highway and wait for them 

to pass before entering the highway. In real life, cars use the special access lanes, 

accelerate and then easily change lanes. 

This is the main reason for which this scenario could not produce valid 

results.  
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6. Conclusions 

 

I have developed two applications that aim at reducing the vehicles’ total 

travel time towards a destination by dynamically computing the best route, using 

real time information about congestions and road conditions. Both solutions 

assume that cars are equipped with short-range wireless communication devices 

and have processing power. 

The first application initially computes a static route and then, using car-to-

car communication, determines traffic conditions on the roads it will travel. When 

unfavorable traffic conditions are detected, the car computes a detour avoiding the 

area with problems. The solution was evaluated on two scenarios: a city scenario 

and a highway scenario. For the city scenario this solution proved to produce good 

result for conditions in which the static route is computed using a combination of 

algorithms and when only a fraction (around 30%) of all cars used it. For the 

highways scenario, due to the limitations of the mobility model, no complete 

results could be produced. 

The second application presented was a hybrid system composed both of 

infrastructure nodes and vehicles. The fixed nodes are placed in all intersections, 

are connected and share a database with information about traffic conditions.  Cars 

approaching an intersection request routing information from the fixed node, 

communicating to it their destination. Based on the information it has about jams 

and delays, the fixed node computes the best route and replies to the vehicle with 

the next road segment it should go on. This application was tested on a city 

scenario in which the vehicle flow was varied. This method has produced good 

results for all traffic participants. 
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Although some average travel times obtained by the first application are 

smaller than those produced by the second, it can be concluded that the hybrid 

system is better because the times produced by it apply to all traffic participants 

while the times produced by the first apply to fractions of participants and only in 

specific conditions. 

. 
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