% By Philip Torr 2002 % copyright Microsoft Corp. %generates a set of point matches + their F matrix!@ %we need to make sure that the object isnt too affine %default values foc = 256.0; no_matches = 100; noise_multiplier = 1; translation_mult = foc * 2; translation_adder = 0; %max number of degrees to rotate rotation_multplier = 2; min_Z = 1; Z_RAN = 10; m3 = 256.0; C = eye(3); C(1,3) = 0; C(2,3) = 0; C(3,3) = 1/foc; R = eye(3); t = rand(3,1); t = t * (translation_mult *norm(t)) +translation_adder; T = [0 -t(3) t(2); t(3) 0 -t(1); -t(2) t(1) 0]; T = T/norm(T); theta = 1/360 * 2 * pi * rand * rotation_multplier; n = 1/360 * 2 * pi * rand * rotation_multplier; p = 1/360 * 2 * pi * rand * rotation_multplier; R(1,1) = (1 - cos(p)) * cos(n)* ( cos(n) * cos(theta) + sin(theta) * sin(n) ) + cos(p)* cos(theta); R(1,2) = (1 - cos(p))* cos(n) * ( sin(n) *cos(theta) - sin(theta) *cos(n) ) - cos(p) *sin(theta); R(1,3) = sin(n) *sin(p); R(2,1) = (1 - cos(p)) *sin(n) *( cos(n) *cos(theta) + sin(theta)* sin(n) ) + cos(p)* sin(theta); R(2,2) = (1 - cos(p)) *sin(n) * ( sin(n) *cos(theta) - sin(theta) *cos(n) ) + cos(p)* cos(theta); R(2,3) = -cos(n) * sin(p); R(3,1) = -sin(p) * ( sin(n) * cos(theta) - sin(theta) * cos(n)); R(3,2) = sin(p) * ( cos(n) * cos(theta) + sin(theta) * sin(n)); R(3,3) = cos(p); %R * R' %R' * R perfect_matches = rand(no_matches,4); noisy_matches = rand(no_matches,4); m1 = rand(3,no_matches); m2 = rand(3,no_matches); x1 = rand(no_matches,1); x2 = rand(no_matches,1); y1 = rand(no_matches,1); y2 = rand(no_matches,1); u1 = rand(no_matches,1); v1 = rand(no_matches,1); X = rand(3,no_matches); %noisy data:---- nx1 = rand(no_matches,1); nx2 = rand(no_matches,1); ny1 = rand(no_matches,1); ny2 = rand(no_matches,1); nu1 = rand(no_matches,1); nv1 = rand(no_matches,1); for(i = 1:no_matches) X(3,i) = min_Z * foc + Z_RAN * foc * X(3,i); X(1,i) = (X(1,i) * 512 -256 ) *X(3,i)/foc; X(2,i) = (X(2,i) * 512 -256 ) * X(3,i)/foc ; end m1 = C *X; m2 = R *X; m2 = m2 + t * ones(1,no_matches); m2 = C * m2; % m2 = C * ( R *X + t); %for(i = 1:no_matches) x1 = (m1(1,:)./m1(3,:))'; y1 = (m1(2,:)./m1(3,:))'; x2 = (m2(1,:)./m2(3,:))'; y2 = (m2(2,:)./m2(3,:))'; perfect_matches(:,1) = x1(:); perfect_matches(:,2) = y1(:); perfect_matches(:,3) = x2(:); perfect_matches(:,4) = y2(:); u1(:) = x2(:) - x1(:); v1(:) = y2(:) - y1(:); noisy_matches(:,1) = x1(:) + randn(no_matches,1) *noise_multiplier; noisy_matches(:,2) = y1(:) + randn(no_matches,1) *noise_multiplier; noisy_matches(:,3) = x2(:) + randn(no_matches,1) *noise_multiplier; noisy_matches(:,4) = y2(:) + randn(no_matches,1) *noise_multiplier; nx1 = noisy_matches(:,1); ny1 = noisy_matches(:,2); nx2 = noisy_matches(:,3); ny2 = noisy_matches(:,4); nu1 = nx2(:) - nx1(:); nv1 = ny2(:) - ny1(:); %m2(i)' * F * m1(i) F = inv(C') * T * R * inv(C); %this is the wrong answer for the algebraic residual!! m1(i)' * F * m2(i) %note here m3 = 1, so need to adjust this to check the results... MM = [1 0 0; 0 1 0; 0 0 1/m3]; MMC = MM * inv(C); %F2 = MM * F * MM; F2 = MMC * T * R * MMC; true_F = F2 / norm(F2); % % %i think this is the right one % f_true = [F2(1) F2(2,:) F2(3,:)]; % f_true = f_true/norm(f_true); % % % %wrong one % fff = [F(:,1)' F(:,2)' F(:,3)'] % fff = fff/norm(fff); %e = errf2(fff,x1,y1,x2,y2, no_matches, m3); tf = true_F; %tf = F; 0.5 * (trace(tf * tf'))^2 - trace((tf * tf')^2) tf * (tf' * tf) - 0.5 .* (trace(tf * tf') * tf) svd(true_F) eig(true_F)