source: proiecte/pmake3d/make3d_original/Make3dSingleImageStanford_version0.1/third_party/kovesi/ransacfitfundmatrix7.m @ 37

Last change on this file since 37 was 37, checked in by (none), 14 years ago

Added original make3d

  • Property svn:executable set to *
File size: 6.1 KB
Line 
1% RANSACFITFUNDMATRIX7 - fits fundamental matrix using RANSAC
2%
3% Usage:   [F, inliers] = ransacfitfundmatrix7(x1, x2, t)
4%
5% This function requires Andrew Zisserman's 7 point fundamental matrix code.
6% See:  http://www.robots.ox.ac.uk/~vgg/hzbook/code/
7%
8% Arguments:
9%          x1  - 2xN or 3xN set of homogeneous points.  If the data is
10%                2xN it is assumed the homogeneous scale factor is 1.
11%          x2  - 2xN or 3xN set of homogeneous points such that x1<->x2.
12%          t   - The distance threshold between data point and the model
13%                used to decide whether a point is an inlier or not.
14%                Note that point coordinates are normalised to that their
15%                mean distance from the origin is sqrt(2).  The value of
16%                t should be set relative to this, say in the range
17%                0.001 - 0.01 
18%
19% Note that it is assumed that the matching of x1 and x2 are putative and it
20% is expected that a percentage of matches will be wrong.
21%
22% Returns:
23%          F       - The 3x3 fundamental matrix such that x2'Fx1 = 0.
24%          inliers - An array of indices of the elements of x1, x2 that were
25%                    the inliers for the best model.
26%
27% See Also: RANSAC, FUNDMATRIX, RANSACFITFUNDMATRIX
28
29% Copyright (c) 2004-2005 Peter Kovesi
30% School of Computer Science & Software Engineering
31% The University of Western Australia
32% http://www.csse.uwa.edu.au/
33%
34% Permission is hereby granted, free of charge, to any person obtaining a copy
35% of this software and associated documentation files (the "Software"), to deal
36% in the Software without restriction, subject to the following conditions:
37%
38% The above copyright notice and this permission notice shall be included in
39% all copies or substantial portions of the Software.
40%
41% The Software is provided "as is", without warranty of any kind.
42
43% February 2004  Original version
44% August   2005  Distance error function changed to match changes in RANSAC
45
46function [F, inliers] = ransacfitfundmatrix7(x1, x2, t, feedback)
47
48    if ~all(size(x1)==size(x2))
49        error('Data sets x1 and x2 must have the same dimension');
50    end
51
52    if nargin == 3
53        feedback = 0;
54    end
55   
56    [rows,npts] = size(x1);
57    if rows~=2 & rows~=3
58        error('x1 and x2 must have 2 or 3 rows');
59    end
60   
61    if rows == 2    % Pad data with homogeneous scale factor of 1
62        x1 = [x1; ones(1,npts)];
63        x2 = [x2; ones(1,npts)];       
64    end
65   
66    % Normalise each set of points so that the origin is at centroid and
67    % mean distance from origin is sqrt(2).  normalise2dpts also ensures the
68    % scale parameter is 1.  Note that 'fundmatrix' will also call
69    % 'normalise2dpts' but the code in 'ransac' that calls the distance
70    % function will not - so it is best that we normalise beforehand.
71    [x1, T1] = normalise2dpts(x1);
72    [x2, T2] = normalise2dpts(x2);
73
74    s = 7;  % Number of points needed to fit a fundamental matrix using
75            % a  7 point solution
76   
77    fittingfn = @vgg_F_from_7pts_wrapper;  % Wrapper for AZ's code
78    distfn    = @funddist;
79    degenfn   = @isdegenerate;
80    % x1 and x2 are 'stacked' to create a 6xN array for ransac
81    [F, inliers] = ransac([x1; x2], fittingfn, distfn, degenfn, s, t, feedback);
82
83    % Now do a final least squares fit on the data points considered to
84    % be inliers.
85    F = fundmatrix(x1(:,inliers), x2(:,inliers));
86   
87    % Denormalise
88    F = T2'*F*T1;
89
90   
91%--------------------------------------------------------------------------
92% Function providing a wrapper for Andrew Zisserman's 7 point fundamental
93% matrix code. See:  http://www.robots.ox.ac.uk/~vgg/hzbook/code/
94% This code takes inputs and returns output according to the requirements of
95% RANSAC
96   
97function F = vgg_F_from_7pts_wrapper(x)
98   
99    Fvgg = vgg_F_from_7pts_2img(x(1:3,:), x(4:6,:));
100
101    if isempty(Fvgg)
102        F = [];
103        return;
104    end
105   
106    % Store the (potentially) 3 solutions in a cell array
107    [rows,cols,Nsolutions] = size(Fvgg);
108    for n = 1:Nsolutions
109        F{1} = Fvgg(:,:,n);
110    end
111
112%--------------------------------------------------------------------------
113% Function to evaluate the first order approximation of the geometric error
114% (Sampson distance) of the fit of a fundamental matrix with respect to a
115% set of matched points as needed by RANSAC.  See: Hartley and Zisserman,
116% 'Multiple View Geometry in Computer Vision', page 270.
117%
118% Note that this code allows for F being a cell array of fundamental matrices of
119% which we have to pick the best one. (A 7 point solution can return up to 3
120% solutions)
121
122function [bestInliers, bestF] = funddist(F, x, t);
123   
124    x1 = x(1:3,:);    % Extract x1 and x2 from x
125    x2 = x(4:6,:);
126   
127   
128    if iscell(F)  % We have several solutions each of which must be tested
129                 
130        nF = length(F);   % Number of solutions to test
131        bestF = F{1};     % Initial allocation of best solution
132        ninliers = 0;     % Number of inliers
133       
134        for k = 1:nF
135            x2tFx1 = zeros(1,length(x1));
136            for n = 1:length(x1)
137                x2tFx1(n) = x2(:,n)'*F{k}*x1(:,n);
138            end
139           
140            Fx1 = F{k}*x1;
141            Ftx2 = F{k}'*x2;     
142
143            % Evaluate distances
144            d =  x2tFx1.^2 ./ ...
145                 (Fx1(1,:).^2 + Fx1(2,:).^2 + Ftx2(1,:).^2 + Ftx2(2,:).^2);
146           
147            inliers = find(abs(d) < t);     % Indices of inlying points
148           
149            if length(inliers) > ninliers   % Record best solution
150                ninliers = length(inliers);
151                bestF = F{k};
152                bestInliers = inliers;
153            end
154        end
155   
156    else     % We just have one solution
157        x2tFx1 = zeros(1,length(x1));
158        for n = 1:length(x1)
159            x2tFx1(n) = x2(:,n)'*F*x1(:,n);
160        end
161       
162        Fx1 = F*x1;
163        Ftx2 = F'*x2;     
164       
165        % Evaluate distances
166        d =  x2tFx1.^2 ./ ...
167             (Fx1(1,:).^2 + Fx1(2,:).^2 + Ftx2(1,:).^2 + Ftx2(2,:).^2);
168       
169        bestInliers = find(abs(d) < t);     % Indices of inlying points
170        bestF = F;                          % Copy F directly to bestF
171       
172    end
173       
174
175
176%----------------------------------------------------------------------
177% (Degenerate!) function to determine if a set of matched points will result
178% in a degeneracy in the calculation of a fundamental matrix as needed by
179% RANSAC.  This function assumes this cannot happen...
180     
181function r = isdegenerate(x)
182    r = 0;   
183   
Note: See TracBrowser for help on using the repository browser.