source: proiecte/pmake3d/make3d_original/Make3dSingleImageStanford_version0.1/third_party/BlueCCal/CalTechCal/project_points2.m @ 37

Last change on this file since 37 was 37, checked in by (none), 14 years ago

Added original make3d

File size: 8.5 KB
Line 
1function [xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk,dxpdalpha] = project_points2(X,om,T,f,c,k,alpha)
2
3%project_points.m
4%
5%[xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk] = project_points2(X,om,T,f,c,k,alpha)
6%
7%Projects a 3D structure onto the image plane.
8%
9%INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points)
10%       (om,T): Rigid motion parameters between world coordinate frame and camera reference frame
11%               om: rotation vector (3x1 vector); T: translation vector (3x1 vector)
12%       f: camera focal length in units of horizontal and vertical pixel units (2x1 vector)
13%       c: principal point location in pixel units (2x1 vector)
14%       k: Distortion coefficients (radial and tangential) (4x1 vector)
15%       alpha: Skew coefficient between x and y pixel (alpha = 0 <=> square pixels)
16%
17%OUTPUT: xp: Projected pixel coordinates (2xN matrix for N points)
18%        dxpdom: Derivative of xp with respect to om ((2N)x3 matrix)
19%        dxpdT: Derivative of xp with respect to T ((2N)x3 matrix)
20%        dxpdf: Derivative of xp with respect to f ((2N)x2 matrix if f is 2x1, or (2N)x1 matrix is f is a scalar)
21%        dxpdc: Derivative of xp with respect to c ((2N)x2 matrix)
22%        dxpdk: Derivative of xp with respect to k ((2N)x4 matrix)
23%
24%Definitions:
25%Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
26%The coordinate vector of P in the camera reference frame is: Xc = R*X + T
27%where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
28%call x, y and z the 3 coordinates of Xc: x = Xc(1); y = Xc(2); z = Xc(3);
29%The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
30%call r^2 = a^2 + b^2.
31%The distorted point coordinates are: xd = [xx;yy] where:
32%
33%xx = a * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6)      +      2*kc(3)*a*b + kc(4)*(r^2 + 2*a^2);
34%yy = b * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6)      +      kc(3)*(r^2 + 2*b^2) + 2*kc(4)*a*b;
35%
36%The left terms correspond to radial distortion (6th degree), the right terms correspond to tangential distortion
37%
38%Finally, convertion into pixel coordinates: The final pixel coordinates vector xp=[xxp;yyp] where:
39%
40%xxp = f(1)*(xx + alpha*yy) + c(1)
41%yyp = f(2)*yy + c(2)
42%
43%
44%NOTE: About 90 percent of the code takes care fo computing the Jacobian matrices
45%
46%
47%Important function called within that program:
48%
49%rodrigues.m: Computes the rotation matrix corresponding to a rotation vector
50%
51%rigid_motion.m: Computes the rigid motion transformation of a given structure
52
53
54if nargin < 7,
55   alpha = 0;
56   if nargin < 6,
57      k = zeros(5,1);
58      if nargin < 5,
59         c = zeros(2,1);
60         if nargin < 4,
61            f = ones(2,1);
62            if nargin < 3,
63               T = zeros(3,1);
64               if nargin < 2,
65                  om = zeros(3,1);
66                  if nargin < 1,
67                     error('Need at least a 3D structure to project (in project_points.m)');
68                     return;
69                  end;
70               end;
71            end;
72         end;
73      end;
74   end;
75end;
76
77
78[m,n] = size(X);
79
80[Y,dYdom,dYdT] = rigid_motion(X,om,T);
81
82
83inv_Z = 1./Y(3,:);
84
85x = (Y(1:2,:) .* (ones(2,1) * inv_Z)) ;
86
87
88bb = (-x(1,:) .* inv_Z)'*ones(1,3);
89cc = (-x(2,:) .* inv_Z)'*ones(1,3);
90
91
92dxdom = zeros(2*n,3);
93dxdom(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(1:3:end,:) + bb .* dYdom(3:3:end,:);
94dxdom(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(2:3:end,:) + cc .* dYdom(3:3:end,:);
95
96dxdT = zeros(2*n,3);
97dxdT(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(1:3:end,:) + bb .* dYdT(3:3:end,:);
98dxdT(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(2:3:end,:) + cc .* dYdT(3:3:end,:);
99
100
101% Add distortion:
102
103r2 = x(1,:).^2 + x(2,:).^2;
104
105dr2dom = 2*((x(1,:)')*ones(1,3)) .* dxdom(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdom(2:2:end,:);
106dr2dT = 2*((x(1,:)')*ones(1,3)) .* dxdT(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdT(2:2:end,:);
107
108
109r4 = r2.^2;
110
111dr4dom = 2*((r2')*ones(1,3)) .* dr2dom;
112dr4dT = 2*((r2')*ones(1,3)) .* dr2dT;
113
114
115r6 = r2.^3;
116
117dr6dom = 3*((r2'.^2)*ones(1,3)) .* dr2dom;
118dr6dT = 3*((r2'.^2)*ones(1,3)) .* dr2dT;
119
120
121% Radial distortion:
122
123cdist = 1 + k(1) * r2 + k(2) * r4 + k(5) * r6;
124
125dcdistdom = k(1) * dr2dom + k(2) * dr4dom + k(5) * dr6dom;
126dcdistdT = k(1) * dr2dT + k(2) * dr4dT + k(5) * dr6dT;
127dcdistdk = [ r2' r4' zeros(n,2) r6'];
128
129
130xd1 = x .* (ones(2,1)*cdist);
131
132dxd1dom = zeros(2*n,3);
133dxd1dom(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdom;
134dxd1dom(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdom;
135coeff = (reshape([cdist;cdist],2*n,1)*ones(1,3));
136dxd1dom = dxd1dom + coeff.* dxdom;
137
138dxd1dT = zeros(2*n,3);
139dxd1dT(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdT;
140dxd1dT(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdT;
141dxd1dT = dxd1dT + coeff.* dxdT;
142
143dxd1dk = zeros(2*n,5);
144dxd1dk(1:2:end,:) = (x(1,:)'*ones(1,5)) .* dcdistdk;
145dxd1dk(2:2:end,:) = (x(2,:)'*ones(1,5)) .* dcdistdk;
146
147
148
149% tangential distortion:
150
151a1 = 2.*x(1,:).*x(2,:);
152a2 = r2 + 2*x(1,:).^2;
153a3 = r2 + 2*x(2,:).^2;
154
155delta_x = [k(3)*a1 + k(4)*a2 ;
156   k(3) * a3 + k(4)*a1];
157
158
159%ddelta_xdx = zeros(2*n,2*n);
160aa = (2*k(3)*x(2,:)+6*k(4)*x(1,:))'*ones(1,3);
161bb = (2*k(3)*x(1,:)+2*k(4)*x(2,:))'*ones(1,3);
162cc = (6*k(3)*x(2,:)+2*k(4)*x(1,:))'*ones(1,3);
163
164ddelta_xdom = zeros(2*n,3);
165ddelta_xdom(1:2:end,:) = aa .* dxdom(1:2:end,:) + bb .* dxdom(2:2:end,:);
166ddelta_xdom(2:2:end,:) = bb .* dxdom(1:2:end,:) + cc .* dxdom(2:2:end,:);
167
168ddelta_xdT = zeros(2*n,3);
169ddelta_xdT(1:2:end,:) = aa .* dxdT(1:2:end,:) + bb .* dxdT(2:2:end,:);
170ddelta_xdT(2:2:end,:) = bb .* dxdT(1:2:end,:) + cc .* dxdT(2:2:end,:);
171
172ddelta_xdk = zeros(2*n,5);
173ddelta_xdk(1:2:end,3) = a1';
174ddelta_xdk(1:2:end,4) = a2';
175ddelta_xdk(2:2:end,3) = a3';
176ddelta_xdk(2:2:end,4) = a1';
177
178
179
180xd2 = xd1 + delta_x;
181
182dxd2dom = dxd1dom + ddelta_xdom ;
183dxd2dT = dxd1dT + ddelta_xdT;
184dxd2dk = dxd1dk + ddelta_xdk ;
185
186
187% Add Skew:
188
189xd3 = [xd2(1,:) + alpha*xd2(2,:);xd2(2,:)];
190
191% Compute: dxd3dom, dxd3dT, dxd3dk, dxd3dalpha
192
193dxd3dom = zeros(2*n,3);
194dxd3dom(1:2:2*n,:) = dxd2dom(1:2:2*n,:) + alpha*dxd2dom(2:2:2*n,:);
195dxd3dom(2:2:2*n,:) = dxd2dom(2:2:2*n,:);
196dxd3dT = zeros(2*n,3);
197dxd3dT(1:2:2*n,:) = dxd2dT(1:2:2*n,:) + alpha*dxd2dT(2:2:2*n,:);
198dxd3dT(2:2:2*n,:) = dxd2dT(2:2:2*n,:);
199dxd3dk = zeros(2*n,5);
200dxd3dk(1:2:2*n,:) = dxd2dk(1:2:2*n,:) + alpha*dxd2dk(2:2:2*n,:);
201dxd3dk(2:2:2*n,:) = dxd2dk(2:2:2*n,:);
202dxd3dalpha = zeros(2*n,1);
203dxd3dalpha(1:2:2*n,:) = xd2(2,:)';
204
205
206
207% Pixel coordinates:
208if length(f)>1,
209    xp = xd3 .* (f * ones(1,n))  +  c*ones(1,n);
210    coeff = reshape(f*ones(1,n),2*n,1);
211    dxpdom = (coeff*ones(1,3)) .* dxd3dom;
212    dxpdT = (coeff*ones(1,3)) .* dxd3dT;
213    dxpdk = (coeff*ones(1,5)) .* dxd3dk;
214    dxpdalpha = (coeff) .* dxd3dalpha;
215    dxpdf = zeros(2*n,2);
216    dxpdf(1:2:end,1) = xd3(1,:)';
217    dxpdf(2:2:end,2) = xd3(2,:)';
218else
219    xp = f * xd3 + c*ones(1,n);
220    dxpdom = f  * dxd3dom;
221    dxpdT = f * dxd3dT;
222    dxpdk = f  * dxd3dk;
223    dxpdalpha = f .* dxd3dalpha;
224    dxpdf = xd3(:);
225end;
226
227dxpdc = zeros(2*n,2);
228dxpdc(1:2:end,1) = ones(n,1);
229dxpdc(2:2:end,2) = ones(n,1);
230
231
232return;
233
234% Test of the Jacobians:
235
236n = 10;
237
238X = 10*randn(3,n);
239om = randn(3,1);
240T = [10*randn(2,1);40];
241f = 1000*rand(2,1);
242c = 1000*randn(2,1);
243k = 0.5*randn(5,1);
244alpha = 0.01*randn(1,1);
245
246[x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X,om,T,f,c,k,alpha);
247
248
249% Test on om: OK
250
251dom = 0.000000001 * norm(om)*randn(3,1);
252om2 = om + dom;
253
254[x2] = project_points2(X,om2,T,f,c,k,alpha);
255
256x_pred = x + reshape(dxdom * dom,2,n);
257
258
259norm(x2-x)/norm(x2 - x_pred)
260
261
262% Test on T: OK!!
263
264dT = 0.0001 * norm(T)*randn(3,1);
265T2 = T + dT;
266
267[x2] = project_points2(X,om,T2,f,c,k,alpha);
268
269x_pred = x + reshape(dxdT * dT,2,n);
270
271
272norm(x2-x)/norm(x2 - x_pred)
273
274
275
276% Test on f: OK!!
277
278df = 0.001 * norm(f)*randn(2,1);
279f2 = f + df;
280
281[x2] = project_points2(X,om,T,f2,c,k,alpha);
282
283x_pred = x + reshape(dxdf * df,2,n);
284
285
286norm(x2-x)/norm(x2 - x_pred)
287
288
289% Test on c: OK!!
290
291dc = 0.01 * norm(c)*randn(2,1);
292c2 = c + dc;
293
294[x2] = project_points2(X,om,T,f,c2,k,alpha);
295
296x_pred = x + reshape(dxdc * dc,2,n);
297
298norm(x2-x)/norm(x2 - x_pred)
299
300% Test on k: OK!!
301
302dk = 0.001 * norm(k)*randn(5,1);
303k2 = k + dk;
304
305[x2] = project_points2(X,om,T,f,c,k2,alpha);
306
307x_pred = x + reshape(dxdk * dk,2,n);
308
309norm(x2-x)/norm(x2 - x_pred)
310
311
312% Test on alpha: OK!!
313
314dalpha = 0.001 * norm(k)*randn(1,1);
315alpha2 = alpha + dalpha;
316
317[x2] = project_points2(X,om,T,f,c,k,alpha2);
318
319x_pred = x + reshape(dxdalpha * dalpha,2,n);
320
321norm(x2-x)/norm(x2 - x_pred)
Note: See TracBrowser for help on using the repository browser.