% * This code was used in the following articles: % * [1] Learning 3-D Scene Structure from a Single Still Image, % * Ashutosh Saxena, Min Sun, Andrew Y. Ng, % * In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007. % * (best paper) % * [2] 3-D Reconstruction from Sparse Views using Monocular Vision, % * Ashutosh Saxena, Min Sun, Andrew Y. Ng, % * In ICCV workshop on Virtual Representations and Modeling % * of Large-scale environments (VRML), 2007. % * [3] 3-D Depth Reconstruction from a Single Still Image, % * Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng. % * International Journal of Computer Vision (IJCV), Aug 2007. % * [6] Learning Depth from Single Monocular Images, % * Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng. % * In Neural Information Processing Systems (NIPS) 18, 2005. % * % * These articles are available at: % * http://make3d.stanford.edu/publications % * % * We request that you cite the papers [1], [3] and [6] in any of % * your reports that uses this code. % * Further, if you use the code in image3dstiching/ (multiple image version), % * then please cite [2]. % * % * If you use the code in third_party/, then PLEASE CITE and follow the % * LICENSE OF THE CORRESPONDING THIRD PARTY CODE. % * % * Finally, this code is for non-commercial use only. For further % * information and to obtain a copy of the license, see % * % * http://make3d.stanford.edu/publications/code % * % * Also, the software distributed under the License is distributed on an % * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either % * express or implied. See the License for the specific language governing % * permissions and limitations under the License. % * % */ function [ Rc, ConS, RoughConS]=Points2SqareConstrain( x, Height) % This function calculate the Sqare constrain given % Input: % 1) Two points % 2) Heights % Return: % Rc2 - (4 x length(x) : the 4 element of each column is the vectorized rotation matrix) % ConS - (4 x length(x)) % ConS([1 2],:) - reference corner for the constrain square (x y) % ConS([3],:) - sqare width along the epipolar line % ConS([4],:) - sqare height othorgonal to the epipolar line % RoughConS - (4 x length(x)) (not allow rotation) % RoughConS([1 2 3 4],:) - [xmax; xmin; ymax; ymin]; xMax = x(1:2,:); xMin = x(3:4,:); tRAN = xMax - xMin; Ptr = tRAN(1,:) < 0; theta_z = atan(tRAN(2,:)./tRAN(1,:)); theta_z(Ptr) = theta_z(Ptr)+pi; Rc = [cos(-theta_z); -sin(-theta_z); sin(-theta_z); cos(-theta_z)]; ConS(1:2,:) = xMin; ConS(3,:) = sum( Rc(1:2,:).*tRAN,1);% also may check sum( Rc(3:4,:).*tRAN,1) close up to zeros to verify correct or not (equal to norm(tRAN,2)) ConS(4,:) = Height; % generate plot point tempConS = [ ConS(3,:); ConS(4,:); ... zeros(1,size(ConS,2)); ConS(4,:);... zeros(1,size(ConS,2)); -ConS(4,:);... ConS(3,:); -ConS(4,:)]; Rc_transpose = [cos(theta_z); -sin(theta_z); sin(theta_z); cos(theta_z)]; tempConS(1:2,:) = [sum( Rc_transpose(1:2,:).*tempConS(1:2,:), 1); ... sum( Rc_transpose(3:4,:).*tempConS(1:2,:), 1)]; tempConS(3:4,:) = [sum( Rc_transpose(1:2,:).*tempConS(3:4,:), 1); ... sum( Rc_transpose(3:4,:).*tempConS(3:4,:), 1)]; tempConS(5:6,:) = [sum( Rc_transpose(1:2,:).*tempConS(5:6,:), 1); ... sum( Rc_transpose(3:4,:).*tempConS(5:6,:), 1)]; tempConS(7:8,:) = [sum( Rc_transpose(1:2,:).*tempConS(7:8,:), 1); ... sum( Rc_transpose(3:4,:).*tempConS(7:8,:), 1)]; tempConS = tempConS + repmat( xMin, 4, 1); % Rough ConS (not allow rotation) calculated from Plot Points RoughConS = [ min( tempConS([ 1 3 5 7],:), [], 1); max( tempConS([ 1 3 5 7],:), [], 1);... min( tempConS([ 2 4 6 8],:), [], 1); max( tempConS([ 2 4 6 8],:), [], 1)]; return;