% * This code was used in the following articles: % * [1] Learning 3-D Scene Structure from a Single Still Image, % * Ashutosh Saxena, Min Sun, Andrew Y. Ng, % * In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007. % * (best paper) % * [2] 3-D Reconstruction from Sparse Views using Monocular Vision, % * Ashutosh Saxena, Min Sun, Andrew Y. Ng, % * In ICCV workshop on Virtual Representations and Modeling % * of Large-scale environments (VRML), 2007. % * [3] 3-D Depth Reconstruction from a Single Still Image, % * Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng. % * International Journal of Computer Vision (IJCV), Aug 2007. % * [6] Learning Depth from Single Monocular Images, % * Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng. % * In Neural Information Processing Systems (NIPS) 18, 2005. % * % * These articles are available at: % * http://make3d.stanford.edu/publications % * % * We request that you cite the papers [1], [3] and [6] in any of % * your reports that uses this code. % * Further, if you use the code in image3dstiching/ (multiple image version), % * then please cite [2]. % * % * If you use the code in third_party/, then PLEASE CITE and follow the % * LICENSE OF THE CORRESPONDING THIRD PARTY CODE. % * % * Finally, this code is for non-commercial use only. For further % * information and to obtain a copy of the license, see % * % * http://make3d.stanford.edu/publications/code % * % * Also, the software distributed under the License is distributed on an % * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either % * express or implied. See the License for the specific language governing % * permissions and limitations under the License. % * % */ T = .2*ones(11); % make light gray plus on dark gray background T(6,3:9) = .6; T(3:9,6) = .6; BW = T>0.5; % make white plus on black background imshow(BW), title('Binary') figure, imshow(T), title('Template') % make new image that offsets template T T_offset = .2*ones(21); offset = [3 5]; % shift by 3 rows, 5 columns T_offset( (1:size(T,1))+offset(1), (1:size(T,2))+offset(2) ) = T; imshow(T_offset), title('Offset Template') % cross-correlate BW and T_offset to recover offset cc = normxcorr2(BW,T_offset); [max_cc, imax] = max(abs(cc(:))); [ypeak, xpeak] = ind2sub(size(cc),imax(1)); corr_offset = [ (ypeak-size(T,1)) (xpeak-size(T,2)) ]; isequal(corr_offset,offset) % 1 means offset was recovered