source: proiecte/pmake3d/make3d_original/Make3dSingleImageStanford_version0.1/LearningCode/Inference/OldVersion/L1NormMinimization.m @ 37

Last change on this file since 37 was 37, checked in by (none), 14 years ago

Added original make3d

File size: 4.8 KB
Line 
1% *  This code was used in the following articles:
2% *  [1] Learning 3-D Scene Structure from a Single Still Image,
3% *      Ashutosh Saxena, Min Sun, Andrew Y. Ng,
4% *      In ICCV workshop on 3D Representation for Recognition (3dRR-07), 2007.
5% *      (best paper)
6% *  [2] 3-D Reconstruction from Sparse Views using Monocular Vision,
7% *      Ashutosh Saxena, Min Sun, Andrew Y. Ng,
8% *      In ICCV workshop on Virtual Representations and Modeling
9% *      of Large-scale environments (VRML), 2007.
10% *  [3] 3-D Depth Reconstruction from a Single Still Image,
11% *      Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng.
12% *      International Journal of Computer Vision (IJCV), Aug 2007.
13% *  [6] Learning Depth from Single Monocular Images,
14% *      Ashutosh Saxena, Sung H. Chung, Andrew Y. Ng.
15% *      In Neural Information Processing Systems (NIPS) 18, 2005.
16% *
17% *  These articles are available at:
18% *  http://make3d.stanford.edu/publications
19% *
20% *  We request that you cite the papers [1], [3] and [6] in any of
21% *  your reports that uses this code.
22% *  Further, if you use the code in image3dstiching/ (multiple image version),
23% *  then please cite [2].
24% * 
25% *  If you use the code in third_party/, then PLEASE CITE and follow the
26% *  LICENSE OF THE CORRESPONDING THIRD PARTY CODE.
27% *
28% *  Finally, this code is for non-commercial use only.  For further
29% *  information and to obtain a copy of the license, see
30% *
31% *  http://make3d.stanford.edu/publications/code
32% *
33% *  Also, the software distributed under the License is distributed on an
34% * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
35% *  express or implied.   See the License for the specific language governing
36% *  permissions and limitations under the License.
37% *
38% */
39function ParaPPCP=L1NormMinimization(NuSupSize,PosiM,CoPM,HoriStickM,VertStickM,PosiDepthScale,Center,CoPEstDepth,EstDepHoriStick,EstDepVertStick,YPointer,RayAllM,RayAllOriM,FarestDist,ClosestDist)
40
41%% we first form the A, x and b for which it is |Ax-b|_1
42
43A1=sparse(diag([PosiDepthScale; Center*CoPEstDepth; EstDepHoriStick; EstDepVertStick])*[PosiM;CoPM;HoriStickM;VertStickM]);
44b=[PosiDepthScale;zeros(size(CoPM,1),1);zeros(size(HoriStickM,1),1);zeros(size(VertStickM,1),1)];
45A2=sparse([-RayAllM;RayAllM;-RayAllOriM;RayAllOriM;diag([zeros(length(YPointer),1);YPointer;zeros(length(YPointer),1)])]);
46c=[-1/FarestDist*ones(size(RayAllM,1),1);1/ClosestDist*ones(size(RayAllM,1),1);-1/FarestDist*ones(size(RayAllOriM,1),1);1/ClosestDist*ones(size(RayAllOriM,1),1);zeros(3*NuSupSize,1)];
47
48%A=diag(VarM/BandWith;Center*CoPEstDepth;EstDepHoriStick;EstDepVertStick)*[PosiM;CoPM1-CoPM2;HoriStickM_i-HoriStickM_j;VertStickM_i-VertStickM_j];
49%b=[ones(size(PosiM,1),1); zeros(size(A,1)-size(PosiM,1),1)];
50
51%% Now we also include the other constraints on ParaPPCP and form a modified A' and b'
52%PPCP_Ycood=[zeros(NuSupSize,1) ones(NuSupSize,1) zeros(NuSupSize,1)];
53%Ap=[RayAllM zeros(3*NuSupSize);-RayAllM zeros(3*NuSupSize);RayAllOriM zeros(3*NuSupSize);-RayAllOriM zeros(3*NuSupSize);PPCP_Ycood zeros(3*NuSupSize);A -eye(3*NuSupSize); -A -eye(3*NuSupSize)];
54%bp=[zeros(size(Ap,1)-size(b,1),1);b;-b];
55
56%% So now we have the problem in the form, minimize 1^ty, s.t. Ap [x;y] <= bp
57M1=size(A1,1);
58% incS1=1:M1;
59M2=size(A2,1);
60% incS2=1:M2;
61% xy=pcg(sparse([A1 -eye(M1); -A1 -eye(M1); A2 zeros(M2)]),[b;-b;c]);
62% x=xy(1:3*NuSupSize);%ones(3*NuSupSize,1);
63% y=xy(3*NuSupSize+1:end);%ones(M1,1);
64x=ones(3*NuSupSize,1);
65y=ones(M1,1);
66% [x,y,flag]=warmStart(A1,A2,b,c,M1,M2,NuSupSize);
67m=M1*2+M2;
68t=1000;
69epsilon=1e-5;
70mu=100;
71alpha=0.2;
72beta=0.5;
73%% may be later I can implement backtracking line search, as of now, working with small alpha;
74
75while((m/t)>epsilon)
76   goOn=boolean(1);
77   while(goOn)
78      %D1=sparse(diag(1./([t1].^2)));
79      %D2=sparse(diag(1./([t2].^2)));
80%       size(b)
81%       size(A1)
82%       size(x)
83      t1=b-A1*x+y+epsilon/t;
84      it1=1./t1;
85      it1s=1./(t1.^2);
86      t2=-b+A1*x+y+epsilon/t;
87      it2=1./t2;
88      it2s=1./(t2.^2);
89      t3=c-A2*x+epsilon/t;
90      t4=(it1s-it2s);
91      t5=(it1s+it2s);
92      D=spdiags((2./([y.^2 + (b-A1*x).^2])),0,M1,M1);
93      D3=spdiags(1./(t3.^2),0,M2,M2);
94      g1=A1'*[it1-it2]-A2'*[1./t3];
95      g2=t*ones(M1,1)-it1-it2;
96      %g=g1+A1'*(D1-D2)*inv(D1+D2)*g2;
97      g=g1+A1'*[(t4./t5).*g2];
98%       DeltaxNt=cgs(A1'*D*A1+A2'*D3*A2,-g);
99      DeltaxNt=pcg(A1'*D*A1+A2'*D3*A2,-g);%cgs(A1'*D*A1+A2'*D3*A2,-g);
100%       DeltaxNt=-pinv(A1'*D*A1+A2'*D3*A2)*g;
101      DeltayNt=((t4.*(A1*DeltaxNt))-g2)./t5;
102      x=x+alpha*DeltaxNt;
103      y=y+alpha*DeltayNt;
104      toler=norm(DeltaxNt./x)
105      if(toler<epsilon)
106        goOn=boolean(0);
107      end
108   end
109   t=mu*t;
110end
111     
112
113
114
115
116
117%% The Hessian is given by A'*diag(d)^2 * A
118%% where d_i = 1/(bi-ai^tx)
119   %d=(1./(bp-Ap*x));
120   %H=A'*diag(d.^2)*A;
121   %g=A'*d;
122   %deltaX=pcg(H,-g);
123   
Note: See TracBrowser for help on using the repository browser.